无人机辅助低轨道卫星边缘计算中的多用户任务卸载:一种博弈论方法

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-09-24 DOI:10.1109/TMC.2024.3465591
Ying Chen;Jie Zhao;Yuan Wu;Jiwei Huang;Xuemin Sherman Shen
{"title":"无人机辅助低轨道卫星边缘计算中的多用户任务卸载:一种博弈论方法","authors":"Ying Chen;Jie Zhao;Yuan Wu;Jiwei Huang;Xuemin Sherman Shen","doi":"10.1109/TMC.2024.3465591","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicle (UAV)-assisted Low Earth Orbit (LEO) satellite edge computing (ULSE) networks can address the challenge communications issues in areas with harsh terrain and achieve global wireless coverage to provide services for mobile user devices (MUDs). This paper studies the LEO-UAV task offloading problem where MUDs compete for limited resources in the ULSE networks. We formulate the optimization problem with the goal of minimizing the cost of all MUDs while meeting resource constraint and satellite coverage time constraint. We first theoretically prove that this problem is NP-hard. We then reformulate the problem as a LEO-UAV task offloading game (LUTO-Game), and show that there is at least one Nash equilibrium solution for the LUTO-Game. We propose a joint UAV and LEO satellite task offloading (JULTO) algorithm to obtain the Nash equilibrium offloading strategy, and analyze the performance of the worst-case offloading strategy obtained by the JULTO algorithm. Finally, extensive experiments, including convergence analysis and comparison experiments, are carried out to validate the effectiveness of our JULTO algorithm.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"363-378"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-User Task Offloading in UAV-Assisted LEO Satellite Edge Computing: A Game-Theoretic Approach\",\"authors\":\"Ying Chen;Jie Zhao;Yuan Wu;Jiwei Huang;Xuemin Sherman Shen\",\"doi\":\"10.1109/TMC.2024.3465591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Vehicle (UAV)-assisted Low Earth Orbit (LEO) satellite edge computing (ULSE) networks can address the challenge communications issues in areas with harsh terrain and achieve global wireless coverage to provide services for mobile user devices (MUDs). This paper studies the LEO-UAV task offloading problem where MUDs compete for limited resources in the ULSE networks. We formulate the optimization problem with the goal of minimizing the cost of all MUDs while meeting resource constraint and satellite coverage time constraint. We first theoretically prove that this problem is NP-hard. We then reformulate the problem as a LEO-UAV task offloading game (LUTO-Game), and show that there is at least one Nash equilibrium solution for the LUTO-Game. We propose a joint UAV and LEO satellite task offloading (JULTO) algorithm to obtain the Nash equilibrium offloading strategy, and analyze the performance of the worst-case offloading strategy obtained by the JULTO algorithm. Finally, extensive experiments, including convergence analysis and comparison experiments, are carried out to validate the effectiveness of our JULTO algorithm.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 1\",\"pages\":\"363-378\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689514/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10689514/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无人机(UAV)辅助的低地球轨道(LEO)卫星边缘计算(ULSE)网络可以解决地形恶劣地区的通信问题,并实现全球无线覆盖,为移动用户设备(mud)提供服务。本文研究了多机器人在ULSE网络中争夺有限资源的低空-无人机任务卸载问题。我们以满足资源约束和卫星覆盖时间约束的情况下,使所有mud的成本最小为目标来制定优化问题。我们首先从理论上证明这个问题是np困难的。然后,我们将问题重新表述为一个LEO-UAV任务卸载博弈(LUTO-Game),并证明了LUTO-Game至少存在一个纳什均衡解。提出了一种无人机和LEO卫星联合任务卸载(JULTO)算法,以获得纳什均衡卸载策略,并分析了JULTO算法得到的最坏情况卸载策略的性能。最后,进行了大量的实验,包括收敛性分析和对比实验,验证了我们的JULTO算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-User Task Offloading in UAV-Assisted LEO Satellite Edge Computing: A Game-Theoretic Approach
Unmanned Aerial Vehicle (UAV)-assisted Low Earth Orbit (LEO) satellite edge computing (ULSE) networks can address the challenge communications issues in areas with harsh terrain and achieve global wireless coverage to provide services for mobile user devices (MUDs). This paper studies the LEO-UAV task offloading problem where MUDs compete for limited resources in the ULSE networks. We formulate the optimization problem with the goal of minimizing the cost of all MUDs while meeting resource constraint and satellite coverage time constraint. We first theoretically prove that this problem is NP-hard. We then reformulate the problem as a LEO-UAV task offloading game (LUTO-Game), and show that there is at least one Nash equilibrium solution for the LUTO-Game. We propose a joint UAV and LEO satellite task offloading (JULTO) algorithm to obtain the Nash equilibrium offloading strategy, and analyze the performance of the worst-case offloading strategy obtained by the JULTO algorithm. Finally, extensive experiments, including convergence analysis and comparison experiments, are carried out to validate the effectiveness of our JULTO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1