第一个土耳其月球风化模拟物的微拉曼和傅里叶红外光谱表征

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-12-06 DOI:10.1007/s10509-024-04383-7
Ozan Unsalan, Y. Cengiz Toklu, Cisem Altunayar-Unsalan, Nurcan Calis Acikbas, Gokhan Acikbas, Ali Erdem Cercevik
{"title":"第一个土耳其月球风化模拟物的微拉曼和傅里叶红外光谱表征","authors":"Ozan Unsalan,&nbsp;Y. Cengiz Toklu,&nbsp;Cisem Altunayar-Unsalan,&nbsp;Nurcan Calis Acikbas,&nbsp;Gokhan Acikbas,&nbsp;Ali Erdem Cercevik","doi":"10.1007/s10509-024-04383-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Infrared and Raman spectroscopic investigations on a new Turkish lunar regolith simulant (TBG-1), Chinese (own product), and Japanese simulants are presented for the first time. Our Raman spectroscopic investigation on TBG-1 simulant implies that it is mainly forsteritic olivine. Moreover, the Chinese sample produced by our group in Türkiye showed carbonate peaks at 712 cm<sup>−1</sup> and 878 cm<sup>−1</sup> in the IR spectra, which were attributed as calcium or sodium carbonates which could be a result of terrestrial weathering. Here, we propose that TBG-1 is close to the composition of lunar highland impact glass in terms of its (Mg, Ca)/Al<sub>2</sub>O<sub>3</sub> ratios. Our effort suggested that our recently produced Turkish simulant is similar to the Apollo 11 lunar soil sample in terms of its Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> composition. Some of the samples we collected to simulate lunar regolith also show similarities to the Apollo 14 samples and JSC-1A simulant produced by NASA.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-Raman and FTIR spectroscopic characterization of the first Turkish lunar regolith simulant\",\"authors\":\"Ozan Unsalan,&nbsp;Y. Cengiz Toklu,&nbsp;Cisem Altunayar-Unsalan,&nbsp;Nurcan Calis Acikbas,&nbsp;Gokhan Acikbas,&nbsp;Ali Erdem Cercevik\",\"doi\":\"10.1007/s10509-024-04383-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, Infrared and Raman spectroscopic investigations on a new Turkish lunar regolith simulant (TBG-1), Chinese (own product), and Japanese simulants are presented for the first time. Our Raman spectroscopic investigation on TBG-1 simulant implies that it is mainly forsteritic olivine. Moreover, the Chinese sample produced by our group in Türkiye showed carbonate peaks at 712 cm<sup>−1</sup> and 878 cm<sup>−1</sup> in the IR spectra, which were attributed as calcium or sodium carbonates which could be a result of terrestrial weathering. Here, we propose that TBG-1 is close to the composition of lunar highland impact glass in terms of its (Mg, Ca)/Al<sub>2</sub>O<sub>3</sub> ratios. Our effort suggested that our recently produced Turkish simulant is similar to the Apollo 11 lunar soil sample in terms of its Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> composition. Some of the samples we collected to simulate lunar regolith also show similarities to the Apollo 14 samples and JSC-1A simulant produced by NASA.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04383-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04383-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次介绍了一种新的土耳其月球表层模拟物(TBG-1)、中国(自己的产品)和日本模拟物的红外和拉曼光谱研究。我们对TBG-1模拟物的拉曼光谱研究表明,它主要是橄榄石。此外,我们小组在 rkiye地区生产的中国样品在红外光谱中显示出712 cm - 1和878 cm - 1的碳酸盐峰,这可能是陆地风化的结果,属于碳酸钙或碳酸钠。在这里,我们提出TBG-1在(Mg, Ca)/Al2O3比率方面接近月球高地撞击玻璃的组成。我们的研究表明,我们最近生产的土耳其模拟物在Al2O3和TiO2组成方面与阿波罗11号月球土壤样本相似。我们收集的一些模拟月球风化层的样本也显示出与阿波罗14号样本和美国宇航局生产的JSC-1A模拟物的相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-Raman and FTIR spectroscopic characterization of the first Turkish lunar regolith simulant

In this work, Infrared and Raman spectroscopic investigations on a new Turkish lunar regolith simulant (TBG-1), Chinese (own product), and Japanese simulants are presented for the first time. Our Raman spectroscopic investigation on TBG-1 simulant implies that it is mainly forsteritic olivine. Moreover, the Chinese sample produced by our group in Türkiye showed carbonate peaks at 712 cm−1 and 878 cm−1 in the IR spectra, which were attributed as calcium or sodium carbonates which could be a result of terrestrial weathering. Here, we propose that TBG-1 is close to the composition of lunar highland impact glass in terms of its (Mg, Ca)/Al2O3 ratios. Our effort suggested that our recently produced Turkish simulant is similar to the Apollo 11 lunar soil sample in terms of its Al2O3 and TiO2 composition. Some of the samples we collected to simulate lunar regolith also show similarities to the Apollo 14 samples and JSC-1A simulant produced by NASA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
The shape of magnetic hole in affecting electron distribution function and wave properties Dispersion relations of relativistic radiation hydrodynamics Dust acoustic soliton and shock structures with consequence of head-on collision in multi-component unmagnetized plasmas Comparative study of linear & non-linear \(f(T)\) gravity models in Bianchi type-III space-time Resolved spectroscopic binaries: orbital elements and parallaxes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1