多路图像分析:我们取得了什么成就,我们将走向何方?

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-12-06 DOI:10.1038/s41592-024-02539-5
Yuval Bussi, Leeat Keren
{"title":"多路图像分析:我们取得了什么成就,我们将走向何方?","authors":"Yuval Bussi, Leeat Keren","doi":"10.1038/s41592-024-02539-5","DOIUrl":null,"url":null,"abstract":"Multiplexed tissue imaging has transformed tissue biology by revealing cellular diversity and interactions, but the analysis of its massive datasets remains a bottleneck. Here, we provide an overview of computational advancements, discuss current challenges and envision an AI-driven future in which integrated tools streamline analysis and visualization, unlocking the full potential of multiplexed imaging for breakthroughs in spatial biology.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2212-2215"},"PeriodicalIF":36.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplexed image analysis: what have we achieved and where are we headed?\",\"authors\":\"Yuval Bussi, Leeat Keren\",\"doi\":\"10.1038/s41592-024-02539-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplexed tissue imaging has transformed tissue biology by revealing cellular diversity and interactions, but the analysis of its massive datasets remains a bottleneck. Here, we provide an overview of computational advancements, discuss current challenges and envision an AI-driven future in which integrated tools streamline analysis and visualization, unlocking the full potential of multiplexed imaging for breakthroughs in spatial biology.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"21 12\",\"pages\":\"2212-2215\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02539-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02539-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多路复用组织成像通过揭示细胞多样性和相互作用改变了组织生物学,但对其大量数据集的分析仍然是一个瓶颈。在这里,我们概述了计算的进步,讨论了当前的挑战,并设想了一个人工智能驱动的未来,在这个未来中,集成工具简化了分析和可视化,释放了多路成像的全部潜力,以实现空间生物学的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiplexed image analysis: what have we achieved and where are we headed?
Multiplexed tissue imaging has transformed tissue biology by revealing cellular diversity and interactions, but the analysis of its massive datasets remains a bottleneck. Here, we provide an overview of computational advancements, discuss current challenges and envision an AI-driven future in which integrated tools streamline analysis and visualization, unlocking the full potential of multiplexed imaging for breakthroughs in spatial biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Oblique line scan illumination enables expansive, accurate and sensitive single-protein measurements in solution and in living cells. Interpreting and comparing neural activity across systems by geometric deep learning. MARBLE: interpretable representations of neural population dynamics using geometric deep learning. The value of lab values. Vector choices, vector surprises.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1