绿色合成核桃壳硫化镉纳米颗粒对SH-SY5Y细胞的抗增殖作用。

Q1 Environmental Science Toxicology Reports Pub Date : 2024-11-19 eCollection Date: 2024-12-01 DOI:10.1016/j.toxrep.2024.101818
Yesim Yeni, Hayrunnisa Nadaroglu, M Sait Ertugrul, Ahmet Hacimuftuoglu, Azize Alayli
{"title":"绿色合成核桃壳硫化镉纳米颗粒对SH-SY5Y细胞的抗增殖作用。","authors":"Yesim Yeni, Hayrunnisa Nadaroglu, M Sait Ertugrul, Ahmet Hacimuftuoglu, Azize Alayli","doi":"10.1016/j.toxrep.2024.101818","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles are attracting attention for their potential therapeutic applications, particularly in cancer therapy, underscoring their importance in medicine. Cadmium sulfide nanoparticles, known for their robust catalytic and optical properties, are classified as chalcogenides and show promise for cancer diagnosis and treatment. Neuroblastoma, a common solid tumor in childhood, poses a significant health threat with different outcomes depending on its biological subtype. This study evaluated the antiproliferative effects of cadmium sulfide nanoparticles on the SY-SH5Y cell line. Walnut shell extract and Na<sub>2</sub>S were used to facilitate the synthesis of cadmium sulfide nanoparticles by green synthesis. Characterization of the synthesized cadmium sulfide nanoparticles was performed by Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray diffraction analyses. The SH-SY5Y cell line was cultured in a standard cell culture medium and then exposed to different cadmium sulfide nanoparticles (10-25-50-75-100 µg/mL) for 24 hours. Cell viability, oxidant, and antioxidant levels were then assessed using a 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür, total antioxidant, and total oxidant assays. The data showed that applying 100 μg/mL cadmium sulfide nanoparticles resulted in a significant decrease in cancer cell viability of up to 40.96 % (<i>p</i><0.05). The cadmium sulfide nanoparticles had a dose-dependent effect on the SH-SY5Y cell line. Furthermore, cadmium sulfide nanoparticles increased oxidative activity in neuroblastoma cells, which was consistent with the results of the 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür assay. In conclusion, cadmium sulfide nanoparticles exhibited potent activity against the neuroblastoma cell. This study highlights the antiproliferative efficacy of green-synthesized cadmium sulfide nanoparticles with walnut shell extract on relevant cancer cell lines.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101818"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antiproliferative effects of cadmium sulfide nanoparticles obtained from walnut shells by green synthesis method on SH-SY5Y cell line.\",\"authors\":\"Yesim Yeni, Hayrunnisa Nadaroglu, M Sait Ertugrul, Ahmet Hacimuftuoglu, Azize Alayli\",\"doi\":\"10.1016/j.toxrep.2024.101818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticles are attracting attention for their potential therapeutic applications, particularly in cancer therapy, underscoring their importance in medicine. Cadmium sulfide nanoparticles, known for their robust catalytic and optical properties, are classified as chalcogenides and show promise for cancer diagnosis and treatment. Neuroblastoma, a common solid tumor in childhood, poses a significant health threat with different outcomes depending on its biological subtype. This study evaluated the antiproliferative effects of cadmium sulfide nanoparticles on the SY-SH5Y cell line. Walnut shell extract and Na<sub>2</sub>S were used to facilitate the synthesis of cadmium sulfide nanoparticles by green synthesis. Characterization of the synthesized cadmium sulfide nanoparticles was performed by Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray diffraction analyses. The SH-SY5Y cell line was cultured in a standard cell culture medium and then exposed to different cadmium sulfide nanoparticles (10-25-50-75-100 µg/mL) for 24 hours. Cell viability, oxidant, and antioxidant levels were then assessed using a 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür, total antioxidant, and total oxidant assays. The data showed that applying 100 μg/mL cadmium sulfide nanoparticles resulted in a significant decrease in cancer cell viability of up to 40.96 % (<i>p</i><0.05). The cadmium sulfide nanoparticles had a dose-dependent effect on the SH-SY5Y cell line. Furthermore, cadmium sulfide nanoparticles increased oxidative activity in neuroblastoma cells, which was consistent with the results of the 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür assay. In conclusion, cadmium sulfide nanoparticles exhibited potent activity against the neuroblastoma cell. This study highlights the antiproliferative efficacy of green-synthesized cadmium sulfide nanoparticles with walnut shell extract on relevant cancer cell lines.</p>\",\"PeriodicalId\":23129,\"journal\":{\"name\":\"Toxicology Reports\",\"volume\":\"13 \",\"pages\":\"101818\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.toxrep.2024.101818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

纳米粒子因其潜在的治疗应用而备受关注,尤其是在癌症治疗方面,凸显了其在医学中的重要性。硫化镉纳米粒子因其强大的催化和光学特性而闻名,被归类为铬镧系元素,有望用于癌症诊断和治疗。神经母细胞瘤是一种常见的儿童实体瘤,对健康构成重大威胁,其生物学亚型不同,结果也不同。本研究评估了硫化镉纳米粒子对 SY-SH5Y 细胞系的抗增殖作用。本研究使用核桃壳提取物和 Na2S 通过绿色合成法合成硫化镉纳米粒子。傅立叶变换红外光谱、扫描电子显微镜和 X 射线衍射分析对合成的硫化镉纳米粒子进行了表征。在标准细胞培养基中培养 SH-SY5Y 细胞系,然后将其暴露于不同的硫化镉纳米颗粒(10-25-50-75-100 µg/mL)中 24 小时。然后使用 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür、总抗氧化剂和总氧化剂测定法评估细胞活力、氧化剂和抗氧化剂水平。数据显示,使用 100 μg/mL 的纳米硫化镉颗粒可显著降低癌细胞的存活率,降幅高达 40.96 %(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antiproliferative effects of cadmium sulfide nanoparticles obtained from walnut shells by green synthesis method on SH-SY5Y cell line.

Nanoparticles are attracting attention for their potential therapeutic applications, particularly in cancer therapy, underscoring their importance in medicine. Cadmium sulfide nanoparticles, known for their robust catalytic and optical properties, are classified as chalcogenides and show promise for cancer diagnosis and treatment. Neuroblastoma, a common solid tumor in childhood, poses a significant health threat with different outcomes depending on its biological subtype. This study evaluated the antiproliferative effects of cadmium sulfide nanoparticles on the SY-SH5Y cell line. Walnut shell extract and Na2S were used to facilitate the synthesis of cadmium sulfide nanoparticles by green synthesis. Characterization of the synthesized cadmium sulfide nanoparticles was performed by Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray diffraction analyses. The SH-SY5Y cell line was cultured in a standard cell culture medium and then exposed to different cadmium sulfide nanoparticles (10-25-50-75-100 µg/mL) for 24 hours. Cell viability, oxidant, and antioxidant levels were then assessed using a 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür, total antioxidant, and total oxidant assays. The data showed that applying 100 μg/mL cadmium sulfide nanoparticles resulted in a significant decrease in cancer cell viability of up to 40.96 % (p<0.05). The cadmium sulfide nanoparticles had a dose-dependent effect on the SH-SY5Y cell line. Furthermore, cadmium sulfide nanoparticles increased oxidative activity in neuroblastoma cells, which was consistent with the results of the 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolyum bromür assay. In conclusion, cadmium sulfide nanoparticles exhibited potent activity against the neuroblastoma cell. This study highlights the antiproliferative efficacy of green-synthesized cadmium sulfide nanoparticles with walnut shell extract on relevant cancer cell lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
期刊最新文献
Genotoxicity study of Cannabis sativa L. extract. Corrigendum regarding missing or incorrect declaration of competing interest statements in previously published articles. Exploring the biological impact of bacteria-derived indole compounds on human cell health: Cytotoxicity and cell proliferation across six cell lines. Harnessing machine learning in contemporary tobacco research. Mycotoxin management in Sub-Saharan Africa: A comprehensive systematic review of policies and strategies in Malawi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1