{"title":"VME-EFD:一种消除单通道脑电图眼电信号伪影的新框架。","authors":"Sayedu Khasim Noorbasha, Arun Kumar","doi":"10.1088/2057-1976/ad9bb6","DOIUrl":null,"url":null,"abstract":"<p><p>The diagnosis of neurological disorders often involves analyzing EEG data, which can be contaminated by artifacts from eye movements or blinking (EOG). To improve the accuracy of EEG-based analysis, we propose a novel framework, VME-EFD, which combines Variational Mode Extraction (VME) and Empirical Fourier Decomposition (EFD) for effective EOG artifact removal. In this approach, the EEG signal is first decomposed by VME into two segments: the desired EEG signal and the EOG artifact. The EOG component is further processed by EFD, where decomposition levels are analyzed based on energy and skewness. The level with the highest energy and skewness, corresponding to the artifact, is discarded, while the remaining levels are reintegrated with the desired EEG. Simulations on both synthetic and real EEG datasets demonstrate that VME-EFD outperforms existing methods, with lower RRMSE (0.1358 versus 0.1557, 0.1823, 0.2079, 0.2748), lower ΔPSD in the<i>α</i>band (0.10 ± 0.01 and 0.17 ± 0.04 versus 0.89 ± 0.91 and 0.22 ± 0.19, 1.32 ± 0.23 and 1.10 ± 0.07, 2.86 ± 1.30 and 1.19 ± 0.07, 3.96 ± 0.56 and 2.42 ± 2.48), and higher correlation coefficient (CC: 0.9732 versus 0.9695, 0.9514, 0.8994, 0.8730). The framework effectively removes EOG artifacts and preserves critical EEG features, particularly in the<i>α</i>band, making it highly suitable for brain-computer interface (BCI) applications.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VME-EFD : A novel framework to eliminate the Electrooculogram artifact from single-channel EEGs.\",\"authors\":\"Sayedu Khasim Noorbasha, Arun Kumar\",\"doi\":\"10.1088/2057-1976/ad9bb6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diagnosis of neurological disorders often involves analyzing EEG data, which can be contaminated by artifacts from eye movements or blinking (EOG). To improve the accuracy of EEG-based analysis, we propose a novel framework, VME-EFD, which combines Variational Mode Extraction (VME) and Empirical Fourier Decomposition (EFD) for effective EOG artifact removal. In this approach, the EEG signal is first decomposed by VME into two segments: the desired EEG signal and the EOG artifact. The EOG component is further processed by EFD, where decomposition levels are analyzed based on energy and skewness. The level with the highest energy and skewness, corresponding to the artifact, is discarded, while the remaining levels are reintegrated with the desired EEG. Simulations on both synthetic and real EEG datasets demonstrate that VME-EFD outperforms existing methods, with lower RRMSE (0.1358 versus 0.1557, 0.1823, 0.2079, 0.2748), lower ΔPSD in the<i>α</i>band (0.10 ± 0.01 and 0.17 ± 0.04 versus 0.89 ± 0.91 and 0.22 ± 0.19, 1.32 ± 0.23 and 1.10 ± 0.07, 2.86 ± 1.30 and 1.19 ± 0.07, 3.96 ± 0.56 and 2.42 ± 2.48), and higher correlation coefficient (CC: 0.9732 versus 0.9695, 0.9514, 0.8994, 0.8730). The framework effectively removes EOG artifacts and preserves critical EEG features, particularly in the<i>α</i>band, making it highly suitable for brain-computer interface (BCI) applications.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad9bb6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9bb6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
神经系统疾病的诊断通常涉及分析脑电图数据,这些数据可能受到眼动或眨眼(EOG)的伪影的污染。为了提高基于脑电图分析的准确性,我们提出了一种新的框架VME-EFD,它结合了变分模提取(VME)和经验傅里叶分解(EFD)来有效地去除脑电图伪影。在该方法中,首先用VME将脑电信号分解为两个部分:期望的脑电信号和脑电信号伪影。EOG成分通过EFD进一步处理,其中根据能量和偏度分析分解水平。在合成和真实EEG数据集上的仿真表明,ve - efd优于现有方法,RRMSE较低(0.1358 vs. 0.1557, 0.1823, 0.2079, 0.2748), α波段的ΔPSD较低(0.10±0.01和0.17±0.04 vs. 0.89±0.91和0.22±0.19,1.32±0.23和1.10±0.07,2.86±1.30和1.19±0.07,3.96±0.56和2.42±2.48)。相关系数较高(CC: 0.9732 vs. 0.9695, 0.9514, 0.8994, 0.8730)。该框架有效地去除了EEG伪影,并保留了关键的EEG特征,特别是在α波段,使其非常适合脑机接口(BCI)应用。
。
VME-EFD : A novel framework to eliminate the Electrooculogram artifact from single-channel EEGs.
The diagnosis of neurological disorders often involves analyzing EEG data, which can be contaminated by artifacts from eye movements or blinking (EOG). To improve the accuracy of EEG-based analysis, we propose a novel framework, VME-EFD, which combines Variational Mode Extraction (VME) and Empirical Fourier Decomposition (EFD) for effective EOG artifact removal. In this approach, the EEG signal is first decomposed by VME into two segments: the desired EEG signal and the EOG artifact. The EOG component is further processed by EFD, where decomposition levels are analyzed based on energy and skewness. The level with the highest energy and skewness, corresponding to the artifact, is discarded, while the remaining levels are reintegrated with the desired EEG. Simulations on both synthetic and real EEG datasets demonstrate that VME-EFD outperforms existing methods, with lower RRMSE (0.1358 versus 0.1557, 0.1823, 0.2079, 0.2748), lower ΔPSD in theαband (0.10 ± 0.01 and 0.17 ± 0.04 versus 0.89 ± 0.91 and 0.22 ± 0.19, 1.32 ± 0.23 and 1.10 ± 0.07, 2.86 ± 1.30 and 1.19 ± 0.07, 3.96 ± 0.56 and 2.42 ± 2.48), and higher correlation coefficient (CC: 0.9732 versus 0.9695, 0.9514, 0.8994, 0.8730). The framework effectively removes EOG artifacts and preserves critical EEG features, particularly in theαband, making it highly suitable for brain-computer interface (BCI) applications.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.