低场1H核磁共振谱仪监测生物技术生产二羟基丙酮

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2024-12-10 DOI:10.1002/bit.28901
Lukas Mahler, Ebru Tasdemir, Anna Nickisch-Hartfiel, Christian Mayer, Martin Jaeger
{"title":"低场1H核磁共振谱仪监测生物技术生产二羟基丙酮","authors":"Lukas Mahler,&nbsp;Ebru Tasdemir,&nbsp;Anna Nickisch-Hartfiel,&nbsp;Christian Mayer,&nbsp;Martin Jaeger","doi":"10.1002/bit.28901","DOIUrl":null,"url":null,"abstract":"<p>The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy. Yet, this approach requires comprehensive data preprocessing and, on occasion, multivariate data analysis. For the process monitoring of the production of DHA, a low-field <sup>1</sup>H nuclear magnetic resonance (NMR) spectrometer was implemented in on-line mode. Small-volume samples were taken from a bypass and transferred to the spectrometer by an autosampler. Complete analysis within minutes allowed real-time process control. To this purpose, reliable automated spectral preprocessing preceded the creation of a univariate model. The model enabled the acquisition of process knowledge from chemical kinetics and facilitated the tracking of both substrate and product concentrations, requiring independent calibration. As a second multivariate approach, principal component analysis was utilized to monitor the process in a semi-quantitative manner without the necessity for calibration. The results of this study are beneficial for real-time monitoring applications with the objective of exerting control over the process in question while minimizing expenditure.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 3","pages":"561-569"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28901","citationCount":"0","resultStr":"{\"title\":\"Monitoring of the Biotechnological Production of Dihydroxyacetone Using a Low-Field 1H NMR Spectrometer\",\"authors\":\"Lukas Mahler,&nbsp;Ebru Tasdemir,&nbsp;Anna Nickisch-Hartfiel,&nbsp;Christian Mayer,&nbsp;Martin Jaeger\",\"doi\":\"10.1002/bit.28901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy. Yet, this approach requires comprehensive data preprocessing and, on occasion, multivariate data analysis. For the process monitoring of the production of DHA, a low-field <sup>1</sup>H nuclear magnetic resonance (NMR) spectrometer was implemented in on-line mode. Small-volume samples were taken from a bypass and transferred to the spectrometer by an autosampler. Complete analysis within minutes allowed real-time process control. To this purpose, reliable automated spectral preprocessing preceded the creation of a univariate model. The model enabled the acquisition of process knowledge from chemical kinetics and facilitated the tracking of both substrate and product concentrations, requiring independent calibration. As a second multivariate approach, principal component analysis was utilized to monitor the process in a semi-quantitative manner without the necessity for calibration. The results of this study are beneficial for real-time monitoring applications with the objective of exerting control over the process in question while minimizing expenditure.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"122 3\",\"pages\":\"561-569\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28901\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28901\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28901","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可持续生产的概念要求利用废物和副产品作为原材料,实施生物技术过程,并采用自动实时监测以有效利用资源。其中一个例子是醋酸细菌将可重复使用的副产物甘油生物催化转化为二羟基丙酮(DHA),这对化妆品工业具有重要意义。紧凑型光谱仪的应用能够快速测量样品,同时减少资源和能源的消耗。然而,这种方法需要全面的数据预处理,有时还需要多变量数据分析。采用低场1H核磁共振(NMR)谱仪对DHA生产过程进行了在线监测。小体积样品从旁路取出,通过自动进样器转移到光谱仪。在几分钟内完成分析,实现实时过程控制。为此,在创建单变量模型之前,需要进行可靠的自动化光谱预处理。该模型能够从化学动力学中获取过程知识,并促进了底物和产物浓度的跟踪,需要独立校准。作为第二种多变量方法,主成分分析被用来半定量地监测过程,而不需要校准。本研究的结果有利于实时监控应用,目的是在最小化支出的同时对相关过程施加控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring of the Biotechnological Production of Dihydroxyacetone Using a Low-Field 1H NMR Spectrometer

The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy. Yet, this approach requires comprehensive data preprocessing and, on occasion, multivariate data analysis. For the process monitoring of the production of DHA, a low-field 1H nuclear magnetic resonance (NMR) spectrometer was implemented in on-line mode. Small-volume samples were taken from a bypass and transferred to the spectrometer by an autosampler. Complete analysis within minutes allowed real-time process control. To this purpose, reliable automated spectral preprocessing preceded the creation of a univariate model. The model enabled the acquisition of process knowledge from chemical kinetics and facilitated the tracking of both substrate and product concentrations, requiring independent calibration. As a second multivariate approach, principal component analysis was utilized to monitor the process in a semi-quantitative manner without the necessity for calibration. The results of this study are beneficial for real-time monitoring applications with the objective of exerting control over the process in question while minimizing expenditure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Derivation of an Upscaled Model for Xylitol Production With Immobilized Microorganisms Development of Methods to Produce SARS CoV-2 Virus-Like Particles at Scale Zeolitic Imidazole Framework-8 Nanoparticles as an Alternative to Freund's Adjuvant for Klebsiella pneumoniae Recombinant Protein Vaccine Biotechnology and Bioengineering: Volume 122, Number 3, March 2025 Enhanced Natural Killer Cell Proliferation by Stress-Induced Feeder Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1