芍药属植物衰老机制的研究进展

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2024-12-10 DOI:10.1093/hr/uhae344
Yuxuan Wang, Miao Sun, Wei Zhu, Le Chen, Shaocai Zhu, Jiageng Zhao, Jaime A Teixeira da Silva, Xiaonan Yu
{"title":"芍药属植物衰老机制的研究进展","authors":"Yuxuan Wang, Miao Sun, Wei Zhu, Le Chen, Shaocai Zhu, Jiageng Zhao, Jaime A Teixeira da Silva, Xiaonan Yu","doi":"10.1093/hr/uhae344","DOIUrl":null,"url":null,"abstract":"Tree and herbaceous peony are considerably important ornamental plants within the genus Paeonia, and hold substantial horticultural value. This review summarizes the progress in research on the senescence mechanisms of tree and herbaceous peony flowers, focusing on the regulation of gene expression, hormonal interactions, and the influence of environmental factors on senescence. Using high-throughput sequencing technologies, key genes displaying differential expression during senescence have been identified, and these play central roles in hormone signaling and cellular senescence. The interactions among plant hormones, including ethylene, abscisic acid, gibberellins, cytokinins, and auxins, also play key roles in the regulation of senescence. Adjustments in antioxidant levels, as well as water and energy metabolism, are critical factors in the delay of senescence. Environmental factors, including light, temperature, drought, and salt stress, also significantly affect senescence. Additionally, this review proposes future research directions, including the expansion of the molecular regulatory network of senescence in Paeonia, the use of gene editing technologies like CRISPR/Cas9, multi-omics studies, and exploratory comparative research on spatial biology senescence mechanisms. These studies aim to deepen our understanding of the molecular mechanisms that underlie senescence in Paeonia, and provide a scientific basis for cultivar improvement and postharvest management of these ornamental commodities in the horticultural industry.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"141 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the Study of Senescence Mechanisms in the Genus Paeonia\",\"authors\":\"Yuxuan Wang, Miao Sun, Wei Zhu, Le Chen, Shaocai Zhu, Jiageng Zhao, Jaime A Teixeira da Silva, Xiaonan Yu\",\"doi\":\"10.1093/hr/uhae344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree and herbaceous peony are considerably important ornamental plants within the genus Paeonia, and hold substantial horticultural value. This review summarizes the progress in research on the senescence mechanisms of tree and herbaceous peony flowers, focusing on the regulation of gene expression, hormonal interactions, and the influence of environmental factors on senescence. Using high-throughput sequencing technologies, key genes displaying differential expression during senescence have been identified, and these play central roles in hormone signaling and cellular senescence. The interactions among plant hormones, including ethylene, abscisic acid, gibberellins, cytokinins, and auxins, also play key roles in the regulation of senescence. Adjustments in antioxidant levels, as well as water and energy metabolism, are critical factors in the delay of senescence. Environmental factors, including light, temperature, drought, and salt stress, also significantly affect senescence. Additionally, this review proposes future research directions, including the expansion of the molecular regulatory network of senescence in Paeonia, the use of gene editing technologies like CRISPR/Cas9, multi-omics studies, and exploratory comparative research on spatial biology senescence mechanisms. These studies aim to deepen our understanding of the molecular mechanisms that underlie senescence in Paeonia, and provide a scientific basis for cultivar improvement and postharvest management of these ornamental commodities in the horticultural industry.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae344\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae344","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

乔木牡丹和草本牡丹是牡丹属中相当重要的观赏植物,具有可观的园艺价值。本文综述了牡丹和芍药花衰老机制的研究进展,重点从基因表达调控、激素相互作用、环境因素对衰老的影响等方面进行了综述。利用高通量测序技术,已经鉴定出在衰老过程中表现出差异表达的关键基因,这些基因在激素信号传导和细胞衰老中起着核心作用。乙烯、脱落酸、赤霉素、细胞分裂素和生长素等植物激素之间的相互作用也在衰老调控中发挥关键作用。抗氧化水平的调整,以及水和能量的代谢,是延缓衰老的关键因素。环境因素,包括光、温度、干旱和盐胁迫,也显著影响衰老。展望未来的研究方向,包括扩大芍药衰老的分子调控网络、利用CRISPR/Cas9等基因编辑技术、开展多组学研究以及空间生物学衰老机制的探索性比较研究等。这些研究旨在加深我们对芍药衰老的分子机制的认识,为芍药的品种改良和采后管理提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in the Study of Senescence Mechanisms in the Genus Paeonia
Tree and herbaceous peony are considerably important ornamental plants within the genus Paeonia, and hold substantial horticultural value. This review summarizes the progress in research on the senescence mechanisms of tree and herbaceous peony flowers, focusing on the regulation of gene expression, hormonal interactions, and the influence of environmental factors on senescence. Using high-throughput sequencing technologies, key genes displaying differential expression during senescence have been identified, and these play central roles in hormone signaling and cellular senescence. The interactions among plant hormones, including ethylene, abscisic acid, gibberellins, cytokinins, and auxins, also play key roles in the regulation of senescence. Adjustments in antioxidant levels, as well as water and energy metabolism, are critical factors in the delay of senescence. Environmental factors, including light, temperature, drought, and salt stress, also significantly affect senescence. Additionally, this review proposes future research directions, including the expansion of the molecular regulatory network of senescence in Paeonia, the use of gene editing technologies like CRISPR/Cas9, multi-omics studies, and exploratory comparative research on spatial biology senescence mechanisms. These studies aim to deepen our understanding of the molecular mechanisms that underlie senescence in Paeonia, and provide a scientific basis for cultivar improvement and postharvest management of these ornamental commodities in the horticultural industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Advanced Technologies in Plant Factories: Exploring Current and Future Economic and Environmental Benefits in Urban Horticulture Epigenetic modification brings new opportunities for gene capture by transposable elements in allopolyploid Brassica napus Fermented chrysanthemum stem as a source of natural phenolic compounds to alleviate tomato bacterial wilt disease SlH3 and SlH4 promote multicellular Trichome formation and elongation by upregulating woolly in tomato Karyotype variation patterns and phenotypic responses of hybrid progenies of triploid loquat (Eriobotrya japonica) provide new insight into aneuploid germplasm innovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1