通过在转录因子中使用重复激活域来提高转录活性

Chaochao He, Yue Liang, Runzhou Chen, Yuxiao Shen, Runhui Li, Tingting Sun, Xing Du, Xiaomei Ni, Junzhong Shang, Yanhong He, Manzhu Bao, Hong Luo, Jihua Wang, Pan Liao, Chunying Kang, Yao-Wu Yuan, Guogui Ning
{"title":"通过在转录因子中使用重复激活域来提高转录活性","authors":"Chaochao He, Yue Liang, Runzhou Chen, Yuxiao Shen, Runhui Li, Tingting Sun, Xing Du, Xiaomei Ni, Junzhong Shang, Yanhong He, Manzhu Bao, Hong Luo, Jihua Wang, Pan Liao, Chunying Kang, Yao-Wu Yuan, Guogui Ning","doi":"10.1093/plcell/koae315","DOIUrl":null,"url":null,"abstract":"Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species. In some cases, shuffling the DNA binding domains and transcriptional activation domains (ADs) between homologous TFs led to synthetic TFs that had stronger activation potency than the original TFs. More importantly, synthetic TFs derived from MYB, NAC, bHLH, and Ethylene-insensitive3-like (EIL) family members containing tandemly repeated ADs had greatly enhanced activity compared to their natural counterparts. These findings enhance our understanding of TF activity and demonstrate that employing tandemly repeated ADs from natural TFs is a simple and widely applicable strategy to enhance the activation potency of synthetic TFs.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting transcriptional activities by employing repeated activation domains in transcription factors\",\"authors\":\"Chaochao He, Yue Liang, Runzhou Chen, Yuxiao Shen, Runhui Li, Tingting Sun, Xing Du, Xiaomei Ni, Junzhong Shang, Yanhong He, Manzhu Bao, Hong Luo, Jihua Wang, Pan Liao, Chunying Kang, Yao-Wu Yuan, Guogui Ning\",\"doi\":\"10.1093/plcell/koae315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species. In some cases, shuffling the DNA binding domains and transcriptional activation domains (ADs) between homologous TFs led to synthetic TFs that had stronger activation potency than the original TFs. More importantly, synthetic TFs derived from MYB, NAC, bHLH, and Ethylene-insensitive3-like (EIL) family members containing tandemly repeated ADs had greatly enhanced activity compared to their natural counterparts. These findings enhance our understanding of TF activity and demonstrate that employing tandemly repeated ADs from natural TFs is a simple and widely applicable strategy to enhance the activation potency of synthetic TFs.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高转录因子(tf)的转录激活活性在生物改良、代谢工程和植物科学的其他方面有多种应用,但方法尚不清楚。本研究采用基因激活和遗传转化的方法,研究了拟南芥(Arabidopsis thaliana)花青素色素1 (ANTHOCYANIN PIGMENT 1, AtPAP1)和淫羊藿(Epimedium sagittatum)淫羊藿(Epimedium sagittatum)中两个MYB TFs及其合成变体的转录活性。使用花青素生物合成作为方便的读取,我们发现同源天然存在的tf在转录激活能力上存在差异,并且当在不同物种中异种表达时,相似的tf会引起遗传程序的大变化。在某些情况下,在同源tf之间重组DNA结合域和转录激活域(ADs)导致合成的tf具有比原始tf更强的激活能力。更重要的是,从含有串联重复ADs的MYB、NAC、bHLH和乙烯不敏感3样(EIL)家族成员中衍生出的合成tf与天然tf相比具有显著增强的活性。这些发现增强了我们对TF活性的理解,并证明使用天然TF的串联重复ADs是一种简单且广泛适用的策略,可以提高合成TF的激活效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting transcriptional activities by employing repeated activation domains in transcription factors
Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species. In some cases, shuffling the DNA binding domains and transcriptional activation domains (ADs) between homologous TFs led to synthetic TFs that had stronger activation potency than the original TFs. More importantly, synthetic TFs derived from MYB, NAC, bHLH, and Ethylene-insensitive3-like (EIL) family members containing tandemly repeated ADs had greatly enhanced activity compared to their natural counterparts. These findings enhance our understanding of TF activity and demonstrate that employing tandemly repeated ADs from natural TFs is a simple and widely applicable strategy to enhance the activation potency of synthetic TFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2 Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2 The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1