{"title":"智能农业中无人机辅助移动边缘计算的约束多目标优化:最小化延迟和能耗","authors":"Kangshun Li;Shumin Xie;Tianjin Zhu;Hui Wang","doi":"10.1109/TSUSC.2024.3401003","DOIUrl":null,"url":null,"abstract":"With the development of technology, unmanned aerial vehicles (UAVs) and Internet of Things devices are widely used in smart agriculture, resulting in significant energy consumption. In this paper, the optimization problem for UAV-assisted mobile computing in smart agriculture is modeled as a constrained multiobjective optimization problem. By jointly optimizing the deployment position of UAVs, the offloading location of the tasks, the transmit power of the devices, and the resource allocation of the UAVs, two optimization objectives (total delay and energy consumption) are minimized simultaneously. In view of the complex constraints, a constrained multiobjective algorithm named JO-DPTS is proposed. The algorithm adopts dual-population and two-stage approach to improve population convergence and diversity. The simulation results substantiate that JO-DPTS exhibits superior performance compared to the other three state-of-the-art constrained multiobjective evolutionary algorithms.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"948-957"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained Multiobjective Optimization for UAV-Assisted Mobile Edge Computing in Smart Agriculture: Minimizing Delay and Energy Consumption\",\"authors\":\"Kangshun Li;Shumin Xie;Tianjin Zhu;Hui Wang\",\"doi\":\"10.1109/TSUSC.2024.3401003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of technology, unmanned aerial vehicles (UAVs) and Internet of Things devices are widely used in smart agriculture, resulting in significant energy consumption. In this paper, the optimization problem for UAV-assisted mobile computing in smart agriculture is modeled as a constrained multiobjective optimization problem. By jointly optimizing the deployment position of UAVs, the offloading location of the tasks, the transmit power of the devices, and the resource allocation of the UAVs, two optimization objectives (total delay and energy consumption) are minimized simultaneously. In view of the complex constraints, a constrained multiobjective algorithm named JO-DPTS is proposed. The algorithm adopts dual-population and two-stage approach to improve population convergence and diversity. The simulation results substantiate that JO-DPTS exhibits superior performance compared to the other three state-of-the-art constrained multiobjective evolutionary algorithms.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 6\",\"pages\":\"948-957\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10533714/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10533714/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Constrained Multiobjective Optimization for UAV-Assisted Mobile Edge Computing in Smart Agriculture: Minimizing Delay and Energy Consumption
With the development of technology, unmanned aerial vehicles (UAVs) and Internet of Things devices are widely used in smart agriculture, resulting in significant energy consumption. In this paper, the optimization problem for UAV-assisted mobile computing in smart agriculture is modeled as a constrained multiobjective optimization problem. By jointly optimizing the deployment position of UAVs, the offloading location of the tasks, the transmit power of the devices, and the resource allocation of the UAVs, two optimization objectives (total delay and energy consumption) are minimized simultaneously. In view of the complex constraints, a constrained multiobjective algorithm named JO-DPTS is proposed. The algorithm adopts dual-population and two-stage approach to improve population convergence and diversity. The simulation results substantiate that JO-DPTS exhibits superior performance compared to the other three state-of-the-art constrained multiobjective evolutionary algorithms.