使用第三方审计师帮助联邦学习:一个高效的拜占庭-鲁棒联邦学习

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-03-20 DOI:10.1109/TSUSC.2024.3379440
Zhuangzhuang Zhang;Libing Wu;Debiao He;Jianxin Li;Na Lu;Xuejiang Wei
{"title":"使用第三方审计师帮助联邦学习:一个高效的拜占庭-鲁棒联邦学习","authors":"Zhuangzhuang Zhang;Libing Wu;Debiao He;Jianxin Li;Na Lu;Xuejiang Wei","doi":"10.1109/TSUSC.2024.3379440","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL), as a distributed machine learning technique, has promise for training models with distributed data in Artificial Intelligence of Things (AIoT). However, FL is vulnerable to Byzantine attacks from diverse participants. While numerous Byzantine-robust FL solutions have been proposed, most of them involve deploying defenses at either the aggregation server or the participant level, significantly impacting the original FL process. Moreover, it will bring extra computational burden to the server or the participant, which is especially unsuitable for the resource-constrained AIoT domain. To resolve the aforementioned concerns, we propose FL-Auditor, a Byzantine-robust FL approach based on public auditing. Its core idea is to use a Third-Party Auditor (TPA) to audit samples from the FL training process, analyzing the trustworthiness of different participants, thereby helping FL obtain a more robust global model. In addition, we also design a lazy update mechanism to reduce the negative impact of sampling audit on the performance of the global model. Extensive experiments have demonstrated the effectiveness of our FL-Auditor in terms of accuracy, robustness against attacks, and flexibility. In particular, compared to the existing method, our FL-Auditor significantly reduces the computation time on the aggregation server by 8×-17×.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"848-861"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning\",\"authors\":\"Zhuangzhuang Zhang;Libing Wu;Debiao He;Jianxin Li;Na Lu;Xuejiang Wei\",\"doi\":\"10.1109/TSUSC.2024.3379440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL), as a distributed machine learning technique, has promise for training models with distributed data in Artificial Intelligence of Things (AIoT). However, FL is vulnerable to Byzantine attacks from diverse participants. While numerous Byzantine-robust FL solutions have been proposed, most of them involve deploying defenses at either the aggregation server or the participant level, significantly impacting the original FL process. Moreover, it will bring extra computational burden to the server or the participant, which is especially unsuitable for the resource-constrained AIoT domain. To resolve the aforementioned concerns, we propose FL-Auditor, a Byzantine-robust FL approach based on public auditing. Its core idea is to use a Third-Party Auditor (TPA) to audit samples from the FL training process, analyzing the trustworthiness of different participants, thereby helping FL obtain a more robust global model. In addition, we also design a lazy update mechanism to reduce the negative impact of sampling audit on the performance of the global model. Extensive experiments have demonstrated the effectiveness of our FL-Auditor in terms of accuracy, robustness against attacks, and flexibility. In particular, compared to the existing method, our FL-Auditor significantly reduces the computation time on the aggregation server by 8×-17×.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 6\",\"pages\":\"848-861\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10475552/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10475552/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)作为一种分布式机器学习技术,在人工智能(AIoT)中具有广泛的应用前景。然而,FL很容易受到来自不同参与者的拜占庭式攻击。虽然已经提出了许多拜占庭健壮的FL解决方案,但其中大多数都涉及在聚合服务器或参与者级别部署防御,这对原始FL进程产生了重大影响。此外,它会给服务器或参与者带来额外的计算负担,尤其不适合资源受限的AIoT领域。为了解决上述问题,我们提出FL- auditor,这是一种基于公共审计的拜占庭式稳健FL方法。其核心思想是使用第三方审计师(TPA)对FL培训过程中的样本进行审计,分析不同参与者的可信度,从而帮助FL获得更稳健的全球模型。此外,我们还设计了一个延迟更新机制,以减少抽样审计对全局模型性能的负面影响。大量的实验证明了我们的FL-Auditor在准确性、抗攻击稳健性和灵活性方面的有效性。特别是,与现有方法相比,我们的FL-Auditor通过8×-17×显著减少了聚合服务器上的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning
Federated Learning (FL), as a distributed machine learning technique, has promise for training models with distributed data in Artificial Intelligence of Things (AIoT). However, FL is vulnerable to Byzantine attacks from diverse participants. While numerous Byzantine-robust FL solutions have been proposed, most of them involve deploying defenses at either the aggregation server or the participant level, significantly impacting the original FL process. Moreover, it will bring extra computational burden to the server or the participant, which is especially unsuitable for the resource-constrained AIoT domain. To resolve the aforementioned concerns, we propose FL-Auditor, a Byzantine-robust FL approach based on public auditing. Its core idea is to use a Third-Party Auditor (TPA) to audit samples from the FL training process, analyzing the trustworthiness of different participants, thereby helping FL obtain a more robust global model. In addition, we also design a lazy update mechanism to reduce the negative impact of sampling audit on the performance of the global model. Extensive experiments have demonstrated the effectiveness of our FL-Auditor in terms of accuracy, robustness against attacks, and flexibility. In particular, compared to the existing method, our FL-Auditor significantly reduces the computation time on the aggregation server by 8×-17×.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Editorial Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach Staged Noise Perturbation for Privacy-Preserving Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1