Uri Rosenblum, Adi Lavi, Arielle G Fischer, Yisrael Parmet, Amir Haim, Shirley Handelzalts
{"title":"一项观察性研究:行走时手臂限制对动态稳定性和上半身对侧向失去平衡的反应的影响。","authors":"Uri Rosenblum, Adi Lavi, Arielle G Fischer, Yisrael Parmet, Amir Haim, Shirley Handelzalts","doi":"10.1098/rsos.241156","DOIUrl":null,"url":null,"abstract":"<p><p>When losing balance, upper-body movements serve as mechanical aids to regain stability. However, it remains unclear how these movements contribute to dynamic stability during recovery from a lateral loss of balance while walking with arm restriction. We aimed to (i) quantify the effect of arm restriction on gait stability and upper-body velocities and (ii) characterize upper-body kinematic strategies in response to lateral surface translations under different arm restriction conditions. Healthy adults were exposed to lateral surface translations while walking on a computerized treadmill under three conditions: 'free arms', '1-arm restricted' and '2-arms restricted'. Dynamic stability and upper-body velocities for the first step after perturbation onset were extracted. We found decreased dynamic stability in the sagittal plane and increased trunk velocity in the '2-arms restricted' condition compared with the 'free arms' condition. Head and trunk movements in the medio-lateral plane were in opposite directions in 44.31% of responses. Additionally, significant trunk velocities were observed in the opposite direction to the perturbation-induced loss of balance. Our results support the contribution of increased upper-body velocities to balance responses following arm-restricted walking perturbations and suggest that the '2-arms restricted' condition may be utilized as a perturbation-based balance training, focusing on head and trunk responses.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 12","pages":"241156"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631449/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effect of arm restriction on dynamic stability and upper-body responses to lateral loss of balance during walking: an observational study.\",\"authors\":\"Uri Rosenblum, Adi Lavi, Arielle G Fischer, Yisrael Parmet, Amir Haim, Shirley Handelzalts\",\"doi\":\"10.1098/rsos.241156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When losing balance, upper-body movements serve as mechanical aids to regain stability. However, it remains unclear how these movements contribute to dynamic stability during recovery from a lateral loss of balance while walking with arm restriction. We aimed to (i) quantify the effect of arm restriction on gait stability and upper-body velocities and (ii) characterize upper-body kinematic strategies in response to lateral surface translations under different arm restriction conditions. Healthy adults were exposed to lateral surface translations while walking on a computerized treadmill under three conditions: 'free arms', '1-arm restricted' and '2-arms restricted'. Dynamic stability and upper-body velocities for the first step after perturbation onset were extracted. We found decreased dynamic stability in the sagittal plane and increased trunk velocity in the '2-arms restricted' condition compared with the 'free arms' condition. Head and trunk movements in the medio-lateral plane were in opposite directions in 44.31% of responses. Additionally, significant trunk velocities were observed in the opposite direction to the perturbation-induced loss of balance. Our results support the contribution of increased upper-body velocities to balance responses following arm-restricted walking perturbations and suggest that the '2-arms restricted' condition may be utilized as a perturbation-based balance training, focusing on head and trunk responses.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 12\",\"pages\":\"241156\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.241156\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241156","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The effect of arm restriction on dynamic stability and upper-body responses to lateral loss of balance during walking: an observational study.
When losing balance, upper-body movements serve as mechanical aids to regain stability. However, it remains unclear how these movements contribute to dynamic stability during recovery from a lateral loss of balance while walking with arm restriction. We aimed to (i) quantify the effect of arm restriction on gait stability and upper-body velocities and (ii) characterize upper-body kinematic strategies in response to lateral surface translations under different arm restriction conditions. Healthy adults were exposed to lateral surface translations while walking on a computerized treadmill under three conditions: 'free arms', '1-arm restricted' and '2-arms restricted'. Dynamic stability and upper-body velocities for the first step after perturbation onset were extracted. We found decreased dynamic stability in the sagittal plane and increased trunk velocity in the '2-arms restricted' condition compared with the 'free arms' condition. Head and trunk movements in the medio-lateral plane were in opposite directions in 44.31% of responses. Additionally, significant trunk velocities were observed in the opposite direction to the perturbation-induced loss of balance. Our results support the contribution of increased upper-body velocities to balance responses following arm-restricted walking perturbations and suggest that the '2-arms restricted' condition may be utilized as a perturbation-based balance training, focusing on head and trunk responses.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.