扫描与BIM:通过激光扫描对钢框架进行自动几何检测和BIM更新

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-12-13 DOI:10.1016/j.autcon.2024.105931
Siwei Lin, Liping Duan, Bin Jiang, Jiming Liu, Haoyu Guo, Jincheng Zhao
{"title":"扫描与BIM:通过激光扫描对钢框架进行自动几何检测和BIM更新","authors":"Siwei Lin, Liping Duan, Bin Jiang, Jiming Liu, Haoyu Guo, Jincheng Zhao","doi":"10.1016/j.autcon.2024.105931","DOIUrl":null,"url":null,"abstract":"3D laser scanning can serve the geometric deformation detection of steel structures. However, the process of handling large-scale point clouds remains labor-intensive and time-consuming. This paper presents an automated approach to extracting the precise axes from point clouds and updating the associated BIM model for steel structures. The strategy involves the initial geometry extraction from IFC files and instance segmentation through the reference point cloud simplification and index rules. Then the axes of all components with different sections are detected through the corresponding standard sections and genetic algorithm. Lastly, the geometric information for each component in the BIM is updated by modifying the IFC file. The method is implemented on a steel framing comprising 218 components, indicating that the workflow works effectively with noise and occlusion. The difference in average distances from 218 components to the scanned point cloud is reduced from 17.50 mm before updating to 4.00 mm after updating.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"38 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scan vs. BIM: Automated geometry detection and BIM updating of steel framing through laser scanning\",\"authors\":\"Siwei Lin, Liping Duan, Bin Jiang, Jiming Liu, Haoyu Guo, Jincheng Zhao\",\"doi\":\"10.1016/j.autcon.2024.105931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D laser scanning can serve the geometric deformation detection of steel structures. However, the process of handling large-scale point clouds remains labor-intensive and time-consuming. This paper presents an automated approach to extracting the precise axes from point clouds and updating the associated BIM model for steel structures. The strategy involves the initial geometry extraction from IFC files and instance segmentation through the reference point cloud simplification and index rules. Then the axes of all components with different sections are detected through the corresponding standard sections and genetic algorithm. Lastly, the geometric information for each component in the BIM is updated by modifying the IFC file. The method is implemented on a steel framing comprising 218 components, indicating that the workflow works effectively with noise and occlusion. The difference in average distances from 218 components to the scanned point cloud is reduced from 17.50 mm before updating to 4.00 mm after updating.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105931\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三维激光扫描可用于钢结构的几何变形检测。然而,处理大规模点云的过程仍然是劳动密集型和耗时的。本文提出了一种自动从点云中提取精确轴并更新钢结构BIM模型的方法。该策略包括从IFC文件中提取初始几何形状,并通过参考点云简化和索引规则进行实例分割。然后通过相应的标准截面和遗传算法检测各部件不同截面的轴线。最后,通过修改IFC文件更新BIM中每个组件的几何信息。该方法在包含218个组件的钢框架上实现,表明该工作流可以有效地处理噪声和遮挡。218个分量与扫描点云的平均距离差从更新前的17.50 mm减小到更新后的4.00 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scan vs. BIM: Automated geometry detection and BIM updating of steel framing through laser scanning
3D laser scanning can serve the geometric deformation detection of steel structures. However, the process of handling large-scale point clouds remains labor-intensive and time-consuming. This paper presents an automated approach to extracting the precise axes from point clouds and updating the associated BIM model for steel structures. The strategy involves the initial geometry extraction from IFC files and instance segmentation through the reference point cloud simplification and index rules. Then the axes of all components with different sections are detected through the corresponding standard sections and genetic algorithm. Lastly, the geometric information for each component in the BIM is updated by modifying the IFC file. The method is implemented on a steel framing comprising 218 components, indicating that the workflow works effectively with noise and occlusion. The difference in average distances from 218 components to the scanned point cloud is reduced from 17.50 mm before updating to 4.00 mm after updating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1