{"title":"癌症诊断的新方法:整合全息显微医学成像和深度学习技术-挑战和未来趋势。","authors":"Asifa Nazir, Ahsan Hussain, Mandeep Singh, Assif Assad","doi":"10.1088/2057-1976/ad9eb7","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures. In this study, we investigate the novel collaborative potential of Deep Learning (DL) and holography microscopic phase imaging for cancer diagnosis. The study comprehensively examines existing literature, analyzes advancements, identifies research gaps, and proposes future research directions in cancer diagnosis through the integrated Quantitative Phase Imaging (QPI) and DL methodology. This novel approach addresses a critical limitation of traditional imaging by capturing detailed structural information, paving the way for more accurate diagnostics. The proposed approach comprises tissue sample collection, holographic image scanning, pre-processing in case of imbalanced datasets, and training on annotated datasets using DL architectures like U-Net and Vision Transformer(ViT's). Furthermore, sophisticated concepts in DL, like the incorporation of Explainable AI techniques (XAI), are suggested for comprehensive disease diagnosis and identification. The study thoroughly investigates the advantages of integrating holography imaging and DL for precise cancer diagnosis. Additionally, meticulous insights are presented by identifying the challenges associated with this integration methodology.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach in Cancer Diagnosis: Integrating Holography Microscopic Medical Imaging and Deep Learning Techniques - Challenges and Future Trends.\",\"authors\":\"Asifa Nazir, Ahsan Hussain, Mandeep Singh, Assif Assad\",\"doi\":\"10.1088/2057-1976/ad9eb7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures. In this study, we investigate the novel collaborative potential of Deep Learning (DL) and holography microscopic phase imaging for cancer diagnosis. The study comprehensively examines existing literature, analyzes advancements, identifies research gaps, and proposes future research directions in cancer diagnosis through the integrated Quantitative Phase Imaging (QPI) and DL methodology. This novel approach addresses a critical limitation of traditional imaging by capturing detailed structural information, paving the way for more accurate diagnostics. The proposed approach comprises tissue sample collection, holographic image scanning, pre-processing in case of imbalanced datasets, and training on annotated datasets using DL architectures like U-Net and Vision Transformer(ViT's). Furthermore, sophisticated concepts in DL, like the incorporation of Explainable AI techniques (XAI), are suggested for comprehensive disease diagnosis and identification. The study thoroughly investigates the advantages of integrating holography imaging and DL for precise cancer diagnosis. Additionally, meticulous insights are presented by identifying the challenges associated with this integration methodology.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad9eb7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9eb7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Novel Approach in Cancer Diagnosis: Integrating Holography Microscopic Medical Imaging and Deep Learning Techniques - Challenges and Future Trends.
Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures. In this study, we investigate the novel collaborative potential of Deep Learning (DL) and holography microscopic phase imaging for cancer diagnosis. The study comprehensively examines existing literature, analyzes advancements, identifies research gaps, and proposes future research directions in cancer diagnosis through the integrated Quantitative Phase Imaging (QPI) and DL methodology. This novel approach addresses a critical limitation of traditional imaging by capturing detailed structural information, paving the way for more accurate diagnostics. The proposed approach comprises tissue sample collection, holographic image scanning, pre-processing in case of imbalanced datasets, and training on annotated datasets using DL architectures like U-Net and Vision Transformer(ViT's). Furthermore, sophisticated concepts in DL, like the incorporation of Explainable AI techniques (XAI), are suggested for comprehensive disease diagnosis and identification. The study thoroughly investigates the advantages of integrating holography imaging and DL for precise cancer diagnosis. Additionally, meticulous insights are presented by identifying the challenges associated with this integration methodology.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.