非病毒基因疗法生物分析综述。

IF 1.9 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS Bioanalysis Pub Date : 2024-12-01 Epub Date: 2024-12-14 DOI:10.1080/17576180.2024.2437418
Maotian Zhou, Xue Zhang, Huan Yan, Lili Xing, Yi Tao, Liang Shen
{"title":"非病毒基因疗法生物分析综述。","authors":"Maotian Zhou, Xue Zhang, Huan Yan, Lili Xing, Yi Tao, Liang Shen","doi":"10.1080/17576180.2024.2437418","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1279-1294"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703353/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review on the bioanalysis of non-virus-based gene therapeutics.\",\"authors\":\"Maotian Zhou, Xue Zhang, Huan Yan, Lili Xing, Yi Tao, Liang Shen\",\"doi\":\"10.1080/17576180.2024.2437418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.</p>\",\"PeriodicalId\":8797,\"journal\":{\"name\":\"Bioanalysis\",\"volume\":\" \",\"pages\":\"1279-1294\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703353/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioanalysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17576180.2024.2437418\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2024.2437418","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,基因疗法在治疗许多遗传和获得性疾病方面有着巨大的希望。越来越多被批准的基因疗法和正在开发的临床管道表明,通过改变体内基因蓝图来治疗疾病的潜力。与针对蛋白质而非潜在原因的常规治疗相比,基因治疗可以通过基因激活、抑制和编辑来实现持久或治愈的效果。然而,将DNA/RNA传递到靶细胞以改变基因表达是一个复杂的过程,涉及跨越细胞外和细胞内环境中的许多障碍。一般来说,递送策略可分为基于病毒的载体和非基于病毒的载体。本文综述了支持非病毒基因治疗研究的各种生物分析策略,包括药代动力学(PK)/毒代动力学(TK)、基因载体、可能表达蛋白的生物分布、免疫原性评估,并强调了非病毒基因治疗中生物分析策略的挑战和未来前景。本文综述将为新兴生物分析方法的发展提供新的见解和方向,为创新基因治疗方法提供技术支持和研究基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on the bioanalysis of non-virus-based gene therapeutics.

Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioanalysis
Bioanalysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍: Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing. The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality. Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing. The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques. Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.
期刊最新文献
Singlicate analysis in ADA assays: comparing assay performance in duplicate and singlicate formats. Evaluation of the light-initiated chemiluminescence assay for quantification of Humulus scandens pollen - specific IgE. Bioanalytical methods in doping controls: a review. Improved real-world UHPLC-MS/MS iohexol analysis; thawed samples, improved calibration curve, and additional matrices. CRISPR in clinical diagnostics: bridging the gap between research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1