{"title":"5G NTN 中定位参考信号的干扰分析与建模","authors":"Alejandro Gonzalez-Garrido;Jorge Querol;Henk Wymeersch;Symeon Chatzinotas","doi":"10.1109/OJCOMS.2024.3503692","DOIUrl":null,"url":null,"abstract":"The integration of Positioning, Navigation, and Timing (PNT) services within the 5G non-terrestrial networks (NTN) infrastructure is necessary to eliminate the need for a GNSS receiver in the user terminal. Using the positioning reference signal (PRS) in an NTN scenario presents significant challenges, such as interference analysis from the transmission of multiple PRS signals. This study provides a stochastic model for the interference generated by PRS transmissions in a 5G NTN scenario. This model has been derived empirically from a Monte Carlo simulator designed specifically for this purpose, showing that the distribution that best fits the interference is a Generalized Extreme Value (GEV) distribution. The parameters of this distribution are also modeled based on the PRS configuration. Therefore, a designer can use this model to evaluate the probability of encountering certain levels of interference.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7567-7581"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759698","citationCount":"0","resultStr":"{\"title\":\"Interference Analysis and Modeling of Positioning Reference Signals in 5G NTN\",\"authors\":\"Alejandro Gonzalez-Garrido;Jorge Querol;Henk Wymeersch;Symeon Chatzinotas\",\"doi\":\"10.1109/OJCOMS.2024.3503692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of Positioning, Navigation, and Timing (PNT) services within the 5G non-terrestrial networks (NTN) infrastructure is necessary to eliminate the need for a GNSS receiver in the user terminal. Using the positioning reference signal (PRS) in an NTN scenario presents significant challenges, such as interference analysis from the transmission of multiple PRS signals. This study provides a stochastic model for the interference generated by PRS transmissions in a 5G NTN scenario. This model has been derived empirically from a Monte Carlo simulator designed specifically for this purpose, showing that the distribution that best fits the interference is a Generalized Extreme Value (GEV) distribution. The parameters of this distribution are also modeled based on the PRS configuration. Therefore, a designer can use this model to evaluate the probability of encountering certain levels of interference.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"7567-7581\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759698\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759698/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759698/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Interference Analysis and Modeling of Positioning Reference Signals in 5G NTN
The integration of Positioning, Navigation, and Timing (PNT) services within the 5G non-terrestrial networks (NTN) infrastructure is necessary to eliminate the need for a GNSS receiver in the user terminal. Using the positioning reference signal (PRS) in an NTN scenario presents significant challenges, such as interference analysis from the transmission of multiple PRS signals. This study provides a stochastic model for the interference generated by PRS transmissions in a 5G NTN scenario. This model has been derived empirically from a Monte Carlo simulator designed specifically for this purpose, showing that the distribution that best fits the interference is a Generalized Extreme Value (GEV) distribution. The parameters of this distribution are also modeled based on the PRS configuration. Therefore, a designer can use this model to evaluate the probability of encountering certain levels of interference.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.