自由空间卫星间光学链路中的射频辅助不确定性锥缩减技术

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-11-27 DOI:10.1109/OJCOMS.2024.3507555
Elena Fernandez-Nino;Juan A. Fraire;Adriano Camps;Joan A. Ruiz-De-Azua
{"title":"自由空间卫星间光学链路中的射频辅助不确定性锥缩减技术","authors":"Elena Fernandez-Nino;Juan A. Fraire;Adriano Camps;Joan A. Ruiz-De-Azua","doi":"10.1109/OJCOMS.2024.3507555","DOIUrl":null,"url":null,"abstract":"One of the space communications industry’s current focuses is developing high-throughput communication terminals for satellite-to-satellite communication links. Optical inter-satellite links provide high data rates, long-range, and robustness against interferences, and they do not require frequency licensing as radiofrequency communication systems. Nevertheless, as the uncertain location of the receiver is comprised in an area larger than that illuminated by the transmitting laser, the pointing accuracy is a critical element in the success of the optical link establishment and maintenance, requiring a pointing, acquisition, and tracking mechanism. The acquisition process is the most time-consuming of the pointing processes, limiting the time available to send data, especially in highly dynamic networks. This paper focuses on reducing the acquisition time by reducing the initial satellite position uncertainty. To this end, a hybrid system that combines RF and optical technologies in a single communication module is proposed. Whereas the control plane is managed via the RF link to exchange more precise global navigation data, the optical link corresponds to the data plane in which payload data is exchanged. The pointing between two satellites is simulated to analyze its behavior, considering the error of cumulative orbital propagation data and global navigation satellite system data. This work also analyzes the cumulative error produced by the propagation of the TLEs over time. Finally, the results show how a system that relies on the exchange of global navigation satellite system positioning data achieves up to 99.45% better-pointing accuracy than a system that bases positioning data on TLE propagation.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7598-7612"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769552","citationCount":"0","resultStr":"{\"title\":\"RF-Assisted Uncertainty Cone Reduction in Free-Space Optical Inter-Satellite Links\",\"authors\":\"Elena Fernandez-Nino;Juan A. Fraire;Adriano Camps;Joan A. Ruiz-De-Azua\",\"doi\":\"10.1109/OJCOMS.2024.3507555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the space communications industry’s current focuses is developing high-throughput communication terminals for satellite-to-satellite communication links. Optical inter-satellite links provide high data rates, long-range, and robustness against interferences, and they do not require frequency licensing as radiofrequency communication systems. Nevertheless, as the uncertain location of the receiver is comprised in an area larger than that illuminated by the transmitting laser, the pointing accuracy is a critical element in the success of the optical link establishment and maintenance, requiring a pointing, acquisition, and tracking mechanism. The acquisition process is the most time-consuming of the pointing processes, limiting the time available to send data, especially in highly dynamic networks. This paper focuses on reducing the acquisition time by reducing the initial satellite position uncertainty. To this end, a hybrid system that combines RF and optical technologies in a single communication module is proposed. Whereas the control plane is managed via the RF link to exchange more precise global navigation data, the optical link corresponds to the data plane in which payload data is exchanged. The pointing between two satellites is simulated to analyze its behavior, considering the error of cumulative orbital propagation data and global navigation satellite system data. This work also analyzes the cumulative error produced by the propagation of the TLEs over time. Finally, the results show how a system that relies on the exchange of global navigation satellite system positioning data achieves up to 99.45% better-pointing accuracy than a system that bases positioning data on TLE propagation.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"7598-7612\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769552\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10769552/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10769552/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

空间通信工业目前的重点之一是开发用于卫星到卫星通信链路的高吞吐量通信终端。光学卫星间链路提供高数据速率、远距离和抗干扰性,并且不像射频通信系统那样需要频率许可。然而,由于接收器的不确定位置包含在比发射激光照射的区域更大的区域中,因此指向精度是光链路建立和维护成功的关键因素,需要指向,获取和跟踪机制。采集过程是最耗时的指向过程,限制了发送数据的时间,特别是在高度动态的网络中。本文的重点是通过降低卫星初始位置的不确定性来减少捕获时间。为此,提出了一种在单个通信模块中结合射频和光学技术的混合系统。控制平面通过射频链路进行管理,以交换更精确的全球导航数据,而光链路对应于交换有效载荷数据的数据平面。考虑轨道传播累积数据和全球导航卫星系统数据的误差,对两颗卫星间的指向进行了仿真分析。这项工作还分析了由TLEs随时间传播产生的累积误差。最后,结果表明,依赖于全球导航卫星系统定位数据交换的系统比基于TLE传播的定位数据的系统的指向精度提高了99.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RF-Assisted Uncertainty Cone Reduction in Free-Space Optical Inter-Satellite Links
One of the space communications industry’s current focuses is developing high-throughput communication terminals for satellite-to-satellite communication links. Optical inter-satellite links provide high data rates, long-range, and robustness against interferences, and they do not require frequency licensing as radiofrequency communication systems. Nevertheless, as the uncertain location of the receiver is comprised in an area larger than that illuminated by the transmitting laser, the pointing accuracy is a critical element in the success of the optical link establishment and maintenance, requiring a pointing, acquisition, and tracking mechanism. The acquisition process is the most time-consuming of the pointing processes, limiting the time available to send data, especially in highly dynamic networks. This paper focuses on reducing the acquisition time by reducing the initial satellite position uncertainty. To this end, a hybrid system that combines RF and optical technologies in a single communication module is proposed. Whereas the control plane is managed via the RF link to exchange more precise global navigation data, the optical link corresponds to the data plane in which payload data is exchanged. The pointing between two satellites is simulated to analyze its behavior, considering the error of cumulative orbital propagation data and global navigation satellite system data. This work also analyzes the cumulative error produced by the propagation of the TLEs over time. Finally, the results show how a system that relies on the exchange of global navigation satellite system positioning data achieves up to 99.45% better-pointing accuracy than a system that bases positioning data on TLE propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
Link Scheduling in Satellite Networks via Machine Learning Over Riemannian Manifolds Harnessing Meta-Reinforcement Learning for Enhanced Tracking in Geofencing Systems Deep Reinforcement Learning-Based Anti-Jamming Approach for Fast Frequency Hopping Systems 5G Networks Security Mitigation Model: An ANN-ISM Hybrid Approach Enhanced Lightweight Quantum Key Distribution Protocol for Improved Efficiency and Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1