通过抗氧化和骨生成程序促进骨再生的添加剂制造双相支架

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2024-12-16 DOI:10.1002/bit.28896
Chunyu Han, Zhenxu Wu, Yuqi Gao, Shuang Yang, Yu Wang, Min Guo, Yueyue Li, Wanzhong Yin, Ling Liu, Wenzhi Song, Peibiao Zhang, Liqiang Wang
{"title":"通过抗氧化和骨生成程序促进骨再生的添加剂制造双相支架","authors":"Chunyu Han,&nbsp;Zhenxu Wu,&nbsp;Yuqi Gao,&nbsp;Shuang Yang,&nbsp;Yu Wang,&nbsp;Min Guo,&nbsp;Yueyue Li,&nbsp;Wanzhong Yin,&nbsp;Ling Liu,&nbsp;Wenzhi Song,&nbsp;Peibiao Zhang,&nbsp;Liqiang Wang","doi":"10.1002/bit.28896","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The repair process of bone tissue includes the early inflammatory response period and the late tissue repair period. It has been widely approved to be beneficial to the repair of bone injury by procedurally inhibiting the inflammatory response in the early stage and promoting bone regeneration in the late stage. In this study, the nano-hydroxyapatite/Poly(glycolide-co-caprolactone) (n-HA/PGCL) scaffold loaded with icariin was fabricated by fused deposition modeling technique, and the quercetin-loaded GelMA was further filled into the scaffold pores via light-curing methods to form a biphasic scaffold loaded with dual molecules (PHI + GQ scaffold). The releases of icariin and quercetin were sequential due to different degradation rates of GelMA and PGCL. In vitro, the scaffold not only scavenged reactive oxygen species production, but also promoted osteogenic differentiation of the MC-3T3-E1 cells. Furthermore, in vivo bone reconstruction of PHI + GQ scaffold was better than other groups by assessment of micro-CT data. In addition, the immunofluorescence staining of Arg-1 and iNOS indicated that PHI + GQ scaffold created an immune microenvironment conducive to bone repair due to the release of quercetin in the early stage, and HE and Masson staining suggested that PHI + GQ scaffold induced more new bone formation. These results demonstrated that the biphasic scaffold loaded with icariin and quercetin had both antioxidants in the early stage and osteogenesis properties in the late stage, obtaining satisfactory bone repair outcomes. Thus, the biphasic scaffold loaded with icariin and quercetin for sequential release could provide a promising solution for the restoration of bone defects and represent a potential strategy for bone regeneration.</p></div>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 3","pages":"654-666"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Additive-Fabricated Biphasic Scaffold for Procedurally Promoting Bone Regeneration via Antioxidant and Osteogenesis\",\"authors\":\"Chunyu Han,&nbsp;Zhenxu Wu,&nbsp;Yuqi Gao,&nbsp;Shuang Yang,&nbsp;Yu Wang,&nbsp;Min Guo,&nbsp;Yueyue Li,&nbsp;Wanzhong Yin,&nbsp;Ling Liu,&nbsp;Wenzhi Song,&nbsp;Peibiao Zhang,&nbsp;Liqiang Wang\",\"doi\":\"10.1002/bit.28896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The repair process of bone tissue includes the early inflammatory response period and the late tissue repair period. It has been widely approved to be beneficial to the repair of bone injury by procedurally inhibiting the inflammatory response in the early stage and promoting bone regeneration in the late stage. In this study, the nano-hydroxyapatite/Poly(glycolide-co-caprolactone) (n-HA/PGCL) scaffold loaded with icariin was fabricated by fused deposition modeling technique, and the quercetin-loaded GelMA was further filled into the scaffold pores via light-curing methods to form a biphasic scaffold loaded with dual molecules (PHI + GQ scaffold). The releases of icariin and quercetin were sequential due to different degradation rates of GelMA and PGCL. In vitro, the scaffold not only scavenged reactive oxygen species production, but also promoted osteogenic differentiation of the MC-3T3-E1 cells. Furthermore, in vivo bone reconstruction of PHI + GQ scaffold was better than other groups by assessment of micro-CT data. In addition, the immunofluorescence staining of Arg-1 and iNOS indicated that PHI + GQ scaffold created an immune microenvironment conducive to bone repair due to the release of quercetin in the early stage, and HE and Masson staining suggested that PHI + GQ scaffold induced more new bone formation. These results demonstrated that the biphasic scaffold loaded with icariin and quercetin had both antioxidants in the early stage and osteogenesis properties in the late stage, obtaining satisfactory bone repair outcomes. Thus, the biphasic scaffold loaded with icariin and quercetin for sequential release could provide a promising solution for the restoration of bone defects and represent a potential strategy for bone regeneration.</p></div>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"122 3\",\"pages\":\"654-666\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28896\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28896","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨组织的修复过程包括早期炎症反应期和后期组织修复期。它通过程序性地抑制早期炎症反应,促进后期骨再生,有利于骨损伤的修复,已被广泛认可。在本研究中,采用熔融沉积建模技术制备了装载伊卡林的纳米羟基磷灰石/聚(乙醇酸- co -己内酯)(n - HA/PGCL)支架,并通过光固化方法将负载槲皮素的GelMA进一步填充到支架孔中,形成双分子负载的双相支架(PHI + GQ支架)。由于GelMA和PGCL的降解速率不同,淫羊藿苷和槲皮素的释放顺序不同。在体外,支架不仅清除活性氧的产生,而且还促进了MC - 3T3 - E1细胞的成骨分化。此外,通过微CT数据评估,PHI + GQ支架的体内骨重建效果优于其他组。此外,Arg‐1和iNOS的免疫荧光染色表明,PHI + GQ支架在早期释放槲皮素,创造了有利于骨修复的免疫微环境,HE和Masson染色表明PHI + GQ支架诱导更多的新骨形成。这些结果表明,负载淫羊藿苷和槲皮素的双相支架在早期具有抗氧化性能,在后期具有成骨性能,获得了满意的骨修复效果。因此,负载淫羊藿苷和槲皮素顺序释放的双相支架可以为骨缺损的修复提供一个有希望的解决方案,并代表了骨再生的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Additive-Fabricated Biphasic Scaffold for Procedurally Promoting Bone Regeneration via Antioxidant and Osteogenesis

The repair process of bone tissue includes the early inflammatory response period and the late tissue repair period. It has been widely approved to be beneficial to the repair of bone injury by procedurally inhibiting the inflammatory response in the early stage and promoting bone regeneration in the late stage. In this study, the nano-hydroxyapatite/Poly(glycolide-co-caprolactone) (n-HA/PGCL) scaffold loaded with icariin was fabricated by fused deposition modeling technique, and the quercetin-loaded GelMA was further filled into the scaffold pores via light-curing methods to form a biphasic scaffold loaded with dual molecules (PHI + GQ scaffold). The releases of icariin and quercetin were sequential due to different degradation rates of GelMA and PGCL. In vitro, the scaffold not only scavenged reactive oxygen species production, but also promoted osteogenic differentiation of the MC-3T3-E1 cells. Furthermore, in vivo bone reconstruction of PHI + GQ scaffold was better than other groups by assessment of micro-CT data. In addition, the immunofluorescence staining of Arg-1 and iNOS indicated that PHI + GQ scaffold created an immune microenvironment conducive to bone repair due to the release of quercetin in the early stage, and HE and Masson staining suggested that PHI + GQ scaffold induced more new bone formation. These results demonstrated that the biphasic scaffold loaded with icariin and quercetin had both antioxidants in the early stage and osteogenesis properties in the late stage, obtaining satisfactory bone repair outcomes. Thus, the biphasic scaffold loaded with icariin and quercetin for sequential release could provide a promising solution for the restoration of bone defects and represent a potential strategy for bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Derivation of an Upscaled Model for Xylitol Production With Immobilized Microorganisms Development of Methods to Produce SARS CoV-2 Virus-Like Particles at Scale Zeolitic Imidazole Framework-8 Nanoparticles as an Alternative to Freund's Adjuvant for Klebsiella pneumoniae Recombinant Protein Vaccine Biotechnology and Bioengineering: Volume 122, Number 3, March 2025 Enhanced Natural Killer Cell Proliferation by Stress-Induced Feeder Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1