原子硫键合碳化钛纳米片用于监测睡眠呼吸暂停综合征的柔性压阻传感器

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-02-05 DOI:10.1016/j.matt.2024.11.021
Yan Bai , Longlu Wang , Xiang Zou , Ning Ding , Yuhui Feng , Zhen You , Weiwei Zhao , Weikang Wang , Feifei Lin , Yuzhe Chen , Yijie Zhang , Jianmin Li , Fangyi Guan , Shujuan Liu , Wei Huang , Qiang Zhao
{"title":"原子硫键合碳化钛纳米片用于监测睡眠呼吸暂停综合征的柔性压阻传感器","authors":"Yan Bai ,&nbsp;Longlu Wang ,&nbsp;Xiang Zou ,&nbsp;Ning Ding ,&nbsp;Yuhui Feng ,&nbsp;Zhen You ,&nbsp;Weiwei Zhao ,&nbsp;Weikang Wang ,&nbsp;Feifei Lin ,&nbsp;Yuzhe Chen ,&nbsp;Yijie Zhang ,&nbsp;Jianmin Li ,&nbsp;Fangyi Guan ,&nbsp;Shujuan Liu ,&nbsp;Wei Huang ,&nbsp;Qiang Zhao","doi":"10.1016/j.matt.2024.11.021","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub> is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti<sub>3</sub>C<sub>2</sub>/Na<sub>2</sub>S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti<sub>3</sub>C<sub>2</sub> nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S<sup>2−</sup> ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti<sub>3</sub>C<sub>2</sub> sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 2","pages":"Article 101927"},"PeriodicalIF":17.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome\",\"authors\":\"Yan Bai ,&nbsp;Longlu Wang ,&nbsp;Xiang Zou ,&nbsp;Ning Ding ,&nbsp;Yuhui Feng ,&nbsp;Zhen You ,&nbsp;Weiwei Zhao ,&nbsp;Weikang Wang ,&nbsp;Feifei Lin ,&nbsp;Yuzhe Chen ,&nbsp;Yijie Zhang ,&nbsp;Jianmin Li ,&nbsp;Fangyi Guan ,&nbsp;Shujuan Liu ,&nbsp;Wei Huang ,&nbsp;Qiang Zhao\",\"doi\":\"10.1016/j.matt.2024.11.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub> is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti<sub>3</sub>C<sub>2</sub>/Na<sub>2</sub>S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti<sub>3</sub>C<sub>2</sub> nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S<sup>2−</sup> ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti<sub>3</sub>C<sub>2</sub> sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 2\",\"pages\":\"Article 101927\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524005964\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524005964","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性压阻传感器通过呼吸气流对睡眠呼吸暂停综合征(SAS)进行实时监测,引起了人们的广泛关注。虽然二维超薄Ti3C2被认为是一种很有前途的压阻材料,但其较差的结构压缩性和抗氧化性限制了其实际应用。本文提出了一种创新的原子硫键策略,用于制备柔性压阻传感器的大尺寸、皱褶和抗氧化Ti3C2/Na2S (TS)薄片。其基本机制是基于Ti3C2纳米片的横向边界组装成大薄片(~ 7 μm),晶格畸变诱导皱褶结构,以及S2−离子的边缘钝化以减轻氧化(105天)的协同效应。褶皱的微结构提供了丰富的空间,增强了可压缩性和接触部位的可变性,从而使灵敏度比Ti3C2传感器提高了5倍,并具有0.2 Pa的超低检测极限。我们演示了高灵敏度和稳定的压阻式传感器集成到呼吸监测系统中用于SAS检测的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome
Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti3C2 is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti3C2/Na2S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti3C2 nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S2− ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti3C2 sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides Open-air spray deposition of PCBM/BCP electron transport layer for inverted perovskite solar cells Sustainable conversion of husk into viscoelastic hydrogels for value-added biomedical applications Exploring the soft cradle effect and ionic transport mechanisms in the LiMXCl4 superionic conductor family Intrinsic toughening in monolayer amorphous carbon nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1