Soniya Raju, Nihal Kularatna, Marcus Wilson, D Alistair Steyn-Ross
{"title":"用于小动物经颅磁刺激的具有波形调节能力的超级电容脉冲发生器。","authors":"Soniya Raju, Nihal Kularatna, Marcus Wilson, D Alistair Steyn-Ross","doi":"10.1088/2057-1976/ad9f6b","DOIUrl":null,"url":null,"abstract":"<p><p>In transcranial magnetic stimulation (TMS), pulsed magnetic fields are applied to the brain, typically requiring high-power stimulators with high voltages and low series impedance. TMS pulse generators for small animal coils, are underexplored, with limited dedicated circuits and simulation models. Here, we present a new design for a high-power TMS pulse generator for small animals, utilizing a pre-charged supercapacitor that is sufficient to produce repeated pulses for TMS applications without the need for recharging. This approach eliminates the need for expensive high-voltage components and a high-voltage power supply. In this paper, we detail the design approach and basic block diagrams of a supercapacitor (SC) based TMS pulse generator, along with its experimental results. The findings indicate that the new circuit enables a complete test using just a single charge of an SC module. The proposed circuit functions as a versatile pulse-shaping device, where the MOSFET is treated as a dynamically varying resistor element rather than a traditional switch; allowing pulse parameter variations. We analyze a novel circuit for generating and controlling TMS pulses in small animal coils, and demonstrate its effectiveness through experimental results.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercapacitor-based pulse generator with waveform adjustment capability for small animal transcranial magnetic stimulation.\",\"authors\":\"Soniya Raju, Nihal Kularatna, Marcus Wilson, D Alistair Steyn-Ross\",\"doi\":\"10.1088/2057-1976/ad9f6b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In transcranial magnetic stimulation (TMS), pulsed magnetic fields are applied to the brain, typically requiring high-power stimulators with high voltages and low series impedance. TMS pulse generators for small animal coils, are underexplored, with limited dedicated circuits and simulation models. Here, we present a new design for a high-power TMS pulse generator for small animals, utilizing a pre-charged supercapacitor that is sufficient to produce repeated pulses for TMS applications without the need for recharging. This approach eliminates the need for expensive high-voltage components and a high-voltage power supply. In this paper, we detail the design approach and basic block diagrams of a supercapacitor (SC) based TMS pulse generator, along with its experimental results. The findings indicate that the new circuit enables a complete test using just a single charge of an SC module. The proposed circuit functions as a versatile pulse-shaping device, where the MOSFET is treated as a dynamically varying resistor element rather than a traditional switch; allowing pulse parameter variations. We analyze a novel circuit for generating and controlling TMS pulses in small animal coils, and demonstrate its effectiveness through experimental results.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad9f6b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9f6b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Supercapacitor-based pulse generator with waveform adjustment capability for small animal transcranial magnetic stimulation.
In transcranial magnetic stimulation (TMS), pulsed magnetic fields are applied to the brain, typically requiring high-power stimulators with high voltages and low series impedance. TMS pulse generators for small animal coils, are underexplored, with limited dedicated circuits and simulation models. Here, we present a new design for a high-power TMS pulse generator for small animals, utilizing a pre-charged supercapacitor that is sufficient to produce repeated pulses for TMS applications without the need for recharging. This approach eliminates the need for expensive high-voltage components and a high-voltage power supply. In this paper, we detail the design approach and basic block diagrams of a supercapacitor (SC) based TMS pulse generator, along with its experimental results. The findings indicate that the new circuit enables a complete test using just a single charge of an SC module. The proposed circuit functions as a versatile pulse-shaping device, where the MOSFET is treated as a dynamically varying resistor element rather than a traditional switch; allowing pulse parameter variations. We analyze a novel circuit for generating and controlling TMS pulses in small animal coils, and demonstrate its effectiveness through experimental results.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.