对OneIso中使用的人工智能和光学图像识别技术进行评估,OneIso是离轴温斯顿-卢茨质量保证模型。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-12-17 DOI:10.1088/2057-1976/ada037
Elliot Grafil, Paul De Jean, Dante Capaldi, Lawrie B Skinner, Lei Xing, Amy S Yu
{"title":"对OneIso中使用的人工智能和光学图像识别技术进行评估,OneIso是离轴温斯顿-卢茨质量保证模型。","authors":"Elliot Grafil, Paul De Jean, Dante Capaldi, Lawrie B Skinner, Lei Xing, Amy S Yu","doi":"10.1088/2057-1976/ada037","DOIUrl":null,"url":null,"abstract":"<p><p>Single-isocenter multitarget (SIMT) stereotactic-radiosurgery (SRS) has recently emerged as a powerful treatment regimen for intracranial tumors. With high specificity, SIMT SRS allows for rapid, high-dose delivery while maintaining integrity of adjacent healthy tissues and minimizing neurocognitive damage to patients. Highly robust and accurate quality assurance (QA) tests are critical to minimize off-targets and damage to surrounding healthy tissues. We have developed a novel QA phantom, named OneIso, to accurately and precisely measure off-axis accuracy, via off-axis Winston-Lutz (OAWL), to assist SIMT SRS programs. In this study, a comparison of three different quantitative numerical methods were performed for isolating and measuring the position of ball-bearings (BBs) used in the OAWL measurement. The three methods evaluated were: 1) feature extraction technique combined with manual intervention 2) a proprietary software utilizing optical image recognition (OIR) techniques, and 3) a machine learning (ML) model employing convolutional neural networks (CNNs). These methods were used to analyze OAWL datasets gathered from a OneIso phantom deployed on a Varian TrueBeam. The precision of localizing positional BBs within the OneIso QA phantom, analysis speed, and robustness were compared across the methods. Significantly, the trained ML model utilizing CNNs was found to exhibit superior precision, analysis speed, and efficiency compared to the other two methods. These results highlight the benefit in shifting from manual and OIR methods to that of ML techniques. The incorporation of CNNs in automated QA analysis can achieve improved precision, allowing for more rapid and wider adoption of SIMT SRS for treating intracranial metastases while preserving integrity of surrounding healthy tissues.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of artificial intelligence and optical image recognition techniques used in OneIso, an off-axis Winston-Lutz quality assurance phantom.\",\"authors\":\"Elliot Grafil, Paul De Jean, Dante Capaldi, Lawrie B Skinner, Lei Xing, Amy S Yu\",\"doi\":\"10.1088/2057-1976/ada037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-isocenter multitarget (SIMT) stereotactic-radiosurgery (SRS) has recently emerged as a powerful treatment regimen for intracranial tumors. With high specificity, SIMT SRS allows for rapid, high-dose delivery while maintaining integrity of adjacent healthy tissues and minimizing neurocognitive damage to patients. Highly robust and accurate quality assurance (QA) tests are critical to minimize off-targets and damage to surrounding healthy tissues. We have developed a novel QA phantom, named OneIso, to accurately and precisely measure off-axis accuracy, via off-axis Winston-Lutz (OAWL), to assist SIMT SRS programs. In this study, a comparison of three different quantitative numerical methods were performed for isolating and measuring the position of ball-bearings (BBs) used in the OAWL measurement. The three methods evaluated were: 1) feature extraction technique combined with manual intervention 2) a proprietary software utilizing optical image recognition (OIR) techniques, and 3) a machine learning (ML) model employing convolutional neural networks (CNNs). These methods were used to analyze OAWL datasets gathered from a OneIso phantom deployed on a Varian TrueBeam. The precision of localizing positional BBs within the OneIso QA phantom, analysis speed, and robustness were compared across the methods. Significantly, the trained ML model utilizing CNNs was found to exhibit superior precision, analysis speed, and efficiency compared to the other two methods. These results highlight the benefit in shifting from manual and OIR methods to that of ML techniques. The incorporation of CNNs in automated QA analysis can achieve improved precision, allowing for more rapid and wider adoption of SIMT SRS for treating intracranial metastases while preserving integrity of surrounding healthy tissues.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ada037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

单等中心多靶点(SIMT)立体定向放射手术(SRS)近年来成为颅内肿瘤的一种强有力的治疗方案。具有高特异性,SIMT SRS允许快速,高剂量递送,同时保持邻近健康组织的完整性,并最大限度地减少对患者的神经认知损伤。高度稳健和准确的质量保证(QA)测试对于最大限度地减少脱靶和对周围健康组织的损害至关重要。我们开发了一种名为OneIso的新型QA模体,通过离轴温斯顿-卢茨(OAWL)精确测量离轴精度,以协助SIMT SRS程序。在本研究中,比较了三种不同的定量数值方法,用于隔离和测量OAWL测量中使用的球轴承(BBs)的位置。评估的三种方法是:1)结合人工干预的特征提取技术;2)利用光学图像识别(OIR)技术的专有软件;3)采用卷积神经网络(cnn)的机器学习(ML)模型。这些方法用于分析从部署在瓦里安TrueBeam上的OneIso幻影收集的OAWL数据集。比较了不同方法在OneIso QA模型中定位bb的精度、分析速度和鲁棒性。值得注意的是,与其他两种方法相比,使用cnn训练的ML模型表现出更高的精度、分析速度和效率。这些结果突出了从手动和OIR方法转向ML技术的好处。在自动化QA分析中结合cnn可以提高精度,允许更快速和更广泛地采用SIMT SRS治疗颅内转移,同时保持周围健康组织的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of artificial intelligence and optical image recognition techniques used in OneIso, an off-axis Winston-Lutz quality assurance phantom.

Single-isocenter multitarget (SIMT) stereotactic-radiosurgery (SRS) has recently emerged as a powerful treatment regimen for intracranial tumors. With high specificity, SIMT SRS allows for rapid, high-dose delivery while maintaining integrity of adjacent healthy tissues and minimizing neurocognitive damage to patients. Highly robust and accurate quality assurance (QA) tests are critical to minimize off-targets and damage to surrounding healthy tissues. We have developed a novel QA phantom, named OneIso, to accurately and precisely measure off-axis accuracy, via off-axis Winston-Lutz (OAWL), to assist SIMT SRS programs. In this study, a comparison of three different quantitative numerical methods were performed for isolating and measuring the position of ball-bearings (BBs) used in the OAWL measurement. The three methods evaluated were: 1) feature extraction technique combined with manual intervention 2) a proprietary software utilizing optical image recognition (OIR) techniques, and 3) a machine learning (ML) model employing convolutional neural networks (CNNs). These methods were used to analyze OAWL datasets gathered from a OneIso phantom deployed on a Varian TrueBeam. The precision of localizing positional BBs within the OneIso QA phantom, analysis speed, and robustness were compared across the methods. Significantly, the trained ML model utilizing CNNs was found to exhibit superior precision, analysis speed, and efficiency compared to the other two methods. These results highlight the benefit in shifting from manual and OIR methods to that of ML techniques. The incorporation of CNNs in automated QA analysis can achieve improved precision, allowing for more rapid and wider adoption of SIMT SRS for treating intracranial metastases while preserving integrity of surrounding healthy tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Biological cell response to electric field: a review of equivalent circuit models and future challenges. A novel hollow-core antiresonant fiber-based biosensor for blood component detection in the THz regime. Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1