水飞蓟宾素作为ENO1和GLUT4双重抑制剂抑制EMT信号传导和TNBC进展的计算机鉴定和验证。

Dheepika Venkatesh, Shilpi Sarkar, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh
{"title":"水飞蓟宾素作为ENO1和GLUT4双重抑制剂抑制EMT信号传导和TNBC进展的计算机鉴定和验证。","authors":"Dheepika Venkatesh, Shilpi Sarkar, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh","doi":"10.1016/j.compbiolchem.2024.108312","DOIUrl":null,"url":null,"abstract":"<p><p>The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108312"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression.\",\"authors\":\"Dheepika Venkatesh, Shilpi Sarkar, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh\",\"doi\":\"10.1016/j.compbiolchem.2024.108312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"115 \",\"pages\":\"108312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2024.108312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常的代谢重编程赋予TNBC细胞足够的生存和转移所需的ATP和乳酸。因此,代谢网络的干预是缓解TNBC细胞中的Warburg效应以削弱其侵袭和转移潜力的有希望的途径。大量的计算机分析发现烯醇化酶1 (ENO1)和表面转运蛋白GLUT4是消除代谢网络的潜在靶点。ENO1和GLUT4基因的表达谱在包括乳腺癌在内的多种癌症中均表现出异常表达。随后,从蛋白-蛋白相互作用网络分析了靶蛋白的功能和生理相互作用。途径富集分析确定了这些蛋白参与的主要癌症信号通路。此外,对接结果表明水飞蓟宾是ENO1和GLUT4的并发抑制剂。通过MMPBSA分析和MD模拟,水飞蓟宾素与两种蛋白的稳定相互作用分别获得了-48.86和-104.31 KJ/mol的结合自由能。此外,细胞活力、ROS测定和活体成像强调了水飞蓟宾明显的细胞毒性,阐明了其在TNBC细胞中引起凋亡的能力。此外,糖酵解实验和基因表达分析表明水飞蓟宾介导的糖酵解途径的抑制。最终,脂质组重编程对脂肪酸代谢的影响从脂滴积累升高、外源性脂肪酸摄取和重新生成脂肪中得以建立。然而,从基因表达研究中可以看出水飞蓟宾对EMT和Wnt通路进展的抑制作用。总的来说,目前的研究强调了通过抑制ENO1和GLUT4来调节TNBC细胞中糖酵解和Wnt通路之间复杂的信号串扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression.

The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational investigation of graphyne monolayer as a promising carrier for anticancer drug delivery. Machine learning and molecular subtyping reveal the impact of diverse patterns of cell death on the prognosis and treatment of hepatocellular carcinoma. In silico analysis of novel Triacontafluoropentadec-1-ene as a sustainable replacement for dodecane in fisheries microplastics: Molecular docking, dynamics simulation and pharmacophore studies of acetylcholinesterase activity. Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1