卵发生的表观遗传学。

IF 2.1 3区 医学 Q2 OBSTETRICS & GYNECOLOGY Archives of Gynecology and Obstetrics Pub Date : 2024-12-18 DOI:10.1007/s00404-024-07882-8
Neda Sindik, Nina Pereza, Sanja Dević Pavlić
{"title":"卵发生的表观遗传学。","authors":"Neda Sindik, Nina Pereza, Sanja Dević Pavlić","doi":"10.1007/s00404-024-07882-8","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic changes include all modifications affecting the expression of genes without changing the nucleotide sequence of the genome. Most studied epigenetic changes include DNA methylation, histone alterations and non-coding RNAs. DNA methylation is an important epigenetic mark, protecting the genome during gametogenesis and early embryo development. Demethylation process is a genome-wide event, taking place in two distinct waves during gametogenesis. The first event helps restore naïve pluripotency of the zygote, while the second event aids in the loss of parental epigenetic memory and facilitates specification of gametes. Histone modifications were recognized in murine and human primordial germ cells where their subsets condense chromatin, protecting it from dynamic changes taking place during gamete maturation. Deacetylation of histones was recognized as an important prerequisite of chromosomal segregation during metaphase II. Germline-specific ncRNAs and piRNAs are important in inhibiting transposon activity during gametogenesis, protecting overall genome stability. All epigenetic changes are prone to disruption, especially by exogenous factors. In recent years, with the increase in infertility, the association between assisted reproductive technology (ART) and its effects on epigenome remodeling of gametes have gained importance. The aim of this review is to summarize the epigenetic modifications crucial for oocyte development, while highlighting their role in reproductive disorders and ART.</p>","PeriodicalId":8330,"journal":{"name":"Archives of Gynecology and Obstetrics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetics of oogenesis.\",\"authors\":\"Neda Sindik, Nina Pereza, Sanja Dević Pavlić\",\"doi\":\"10.1007/s00404-024-07882-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic changes include all modifications affecting the expression of genes without changing the nucleotide sequence of the genome. Most studied epigenetic changes include DNA methylation, histone alterations and non-coding RNAs. DNA methylation is an important epigenetic mark, protecting the genome during gametogenesis and early embryo development. Demethylation process is a genome-wide event, taking place in two distinct waves during gametogenesis. The first event helps restore naïve pluripotency of the zygote, while the second event aids in the loss of parental epigenetic memory and facilitates specification of gametes. Histone modifications were recognized in murine and human primordial germ cells where their subsets condense chromatin, protecting it from dynamic changes taking place during gamete maturation. Deacetylation of histones was recognized as an important prerequisite of chromosomal segregation during metaphase II. Germline-specific ncRNAs and piRNAs are important in inhibiting transposon activity during gametogenesis, protecting overall genome stability. All epigenetic changes are prone to disruption, especially by exogenous factors. In recent years, with the increase in infertility, the association between assisted reproductive technology (ART) and its effects on epigenome remodeling of gametes have gained importance. The aim of this review is to summarize the epigenetic modifications crucial for oocyte development, while highlighting their role in reproductive disorders and ART.</p>\",\"PeriodicalId\":8330,\"journal\":{\"name\":\"Archives of Gynecology and Obstetrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Gynecology and Obstetrics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00404-024-07882-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Gynecology and Obstetrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00404-024-07882-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

表观遗传变化包括所有影响基因表达的修饰,而不改变基因组的核苷酸序列。大多数研究的表观遗传变化包括DNA甲基化,组蛋白改变和非编码rna。DNA甲基化是一个重要的表观遗传标记,在配子体发生和胚胎早期发育过程中保护基因组。去甲基化过程是一个全基因组的事件,发生在配子体发生的两个不同的波。第一个事件有助于恢复naïve合子的多能性,而第二个事件有助于丧失亲本表观遗传记忆并促进配子的规范。组蛋白修饰在小鼠和人类原始生殖细胞中被发现,它们的亚群浓缩染色质,保护它免受配子成熟过程中发生的动态变化。组蛋白的去乙酰化被认为是中期染色体分离的重要前提。种系特异性ncrna和pirna在配子发生过程中抑制转座子活性,保护整体基因组稳定性方面发挥重要作用。所有的表观遗传变化都容易受到干扰,尤其是受到外源因素的干扰。近年来,随着不孕症的增加,辅助生殖技术(ART)及其对配子表观基因组重塑的影响越来越受到重视。本文综述了对卵母细胞发育至关重要的表观遗传修饰,同时强调了它们在生殖障碍和抗逆转录病毒治疗中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epigenetics of oogenesis.

Epigenetic changes include all modifications affecting the expression of genes without changing the nucleotide sequence of the genome. Most studied epigenetic changes include DNA methylation, histone alterations and non-coding RNAs. DNA methylation is an important epigenetic mark, protecting the genome during gametogenesis and early embryo development. Demethylation process is a genome-wide event, taking place in two distinct waves during gametogenesis. The first event helps restore naïve pluripotency of the zygote, while the second event aids in the loss of parental epigenetic memory and facilitates specification of gametes. Histone modifications were recognized in murine and human primordial germ cells where their subsets condense chromatin, protecting it from dynamic changes taking place during gamete maturation. Deacetylation of histones was recognized as an important prerequisite of chromosomal segregation during metaphase II. Germline-specific ncRNAs and piRNAs are important in inhibiting transposon activity during gametogenesis, protecting overall genome stability. All epigenetic changes are prone to disruption, especially by exogenous factors. In recent years, with the increase in infertility, the association between assisted reproductive technology (ART) and its effects on epigenome remodeling of gametes have gained importance. The aim of this review is to summarize the epigenetic modifications crucial for oocyte development, while highlighting their role in reproductive disorders and ART.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
15.40%
发文量
493
审稿时长
1 months
期刊介绍: Founded in 1870 as "Archiv für Gynaekologie", Archives of Gynecology and Obstetrics has a long and outstanding tradition. Since 1922 the journal has been the Organ of the Deutsche Gesellschaft für Gynäkologie und Geburtshilfe. "The Archives of Gynecology and Obstetrics" is circulated in over 40 countries world wide and is indexed in "PubMed/Medline" and "Science Citation Index Expanded/Journal Citation Report". The journal publishes invited and submitted reviews; peer-reviewed original articles about clinical topics and basic research as well as news and views and guidelines and position statements from all sub-specialties in gynecology and obstetrics.
期刊最新文献
The outcome of early perineal rehabilitation in obstetric anal sphincter injuries: a single-center experience. Comparison of complications and surgery outcomes in skin closure methods following cesarean sections. Impact of a new image enhancement technology on the nuchal translucency thickness. The effect of intrapartum deinfibulation on obstetric outcomes and postpartum sexual function in pregnant women with Type 3 Female Genital Mutilation/Cutting. Unmet clinical needs in women with polycystic ovary syndrome regarding fertility and obesity: a cross-sectional study from the patient's perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1