利用OKSM和RNN预测2023年1 - 4月x级太阳耀斑期间GPS信号距离误差

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geomagnetism and Aeronomy Pub Date : 2024-12-19 DOI:10.1134/S0016793224600437
R. Mukesh, Sarat C. Dass, M. Vijay, S. Kiruthiga, Vijanth Sagayan Asirvadam
{"title":"利用OKSM和RNN预测2023年1 - 4月x级太阳耀斑期间GPS信号距离误差","authors":"R. Mukesh,&nbsp;Sarat C. Dass,&nbsp;M. Vijay,&nbsp;S. Kiruthiga,&nbsp;Vijanth Sagayan Asirvadam","doi":"10.1134/S0016793224600437","DOIUrl":null,"url":null,"abstract":"<p>Positioning, navigation and time are the cornerstones of satellite navigation. These aspects are frequently affected by ionospheric variations caused by solar flares (SF). In this study, we have attempted to predict the range error (RE) caused by ionospheric delay in Global Positioning System (GPS) signals during six different X-class SF that occurred in the 25th solar cycle using two different approaches, namely, a recurrent neural network (RNN) and the ordinary Kriging-based surrogate model (OKSM). The total electron content (TEC) collected from Hyderabad station along with other input parameter includes the Planetary A and K index (<i>Ap</i> and <i>Kp</i>), solar sunspot number (SSN), disturbance storm time index (<i>Dst</i>), and radio flux measured at 10.7 cm (<i>F</i>10.7) were used for prediction. The OKSM uses the previous six days of datasets to predict the RE on the seventh day, whereas the RNN model uses the previous 45 days of datasets to predict the RE on the 46th day. The performance of both models is evaluated using statistical parameters such as root mean square error (RMSE), normalized root mean square error (NRMSE), Pearson’s correlation coefficient (CC), and symmetric mean absolute percentage error (sMAPE). The results indicate that the OKSM performs well in adverse space weather conditions when compared to RNN.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"932 - 951"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Range Error in GPS Signals during X-Class Solar Flares Occurred between January–April 2023 Using OKSM and RNN\",\"authors\":\"R. Mukesh,&nbsp;Sarat C. Dass,&nbsp;M. Vijay,&nbsp;S. Kiruthiga,&nbsp;Vijanth Sagayan Asirvadam\",\"doi\":\"10.1134/S0016793224600437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Positioning, navigation and time are the cornerstones of satellite navigation. These aspects are frequently affected by ionospheric variations caused by solar flares (SF). In this study, we have attempted to predict the range error (RE) caused by ionospheric delay in Global Positioning System (GPS) signals during six different X-class SF that occurred in the 25th solar cycle using two different approaches, namely, a recurrent neural network (RNN) and the ordinary Kriging-based surrogate model (OKSM). The total electron content (TEC) collected from Hyderabad station along with other input parameter includes the Planetary A and K index (<i>Ap</i> and <i>Kp</i>), solar sunspot number (SSN), disturbance storm time index (<i>Dst</i>), and radio flux measured at 10.7 cm (<i>F</i>10.7) were used for prediction. The OKSM uses the previous six days of datasets to predict the RE on the seventh day, whereas the RNN model uses the previous 45 days of datasets to predict the RE on the 46th day. The performance of both models is evaluated using statistical parameters such as root mean square error (RMSE), normalized root mean square error (NRMSE), Pearson’s correlation coefficient (CC), and symmetric mean absolute percentage error (sMAPE). The results indicate that the OKSM performs well in adverse space weather conditions when compared to RNN.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 6\",\"pages\":\"932 - 951\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600437\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600437","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

定位、导航和时间是卫星导航的基石。这些方面经常受到太阳耀斑(SF)引起的电离层变化的影响。在这项研究中,我们尝试使用两种不同的方法,即递归神经网络(RNN)和普通的基于kriging的代理模型(OKSM),预测全球定位系统(GPS)信号在第25太阳周期发生的6个不同的x级SF期间电离层延迟引起的距离误差(RE)。利用海得拉巴站收集的总电子含量(TEC)、行星A和K指数(Ap和Kp)、太阳黑子数(SSN)、扰动风暴时间指数(Dst)和10.7 cm射电通量(F10.7)等输入参数进行预测。OKSM使用前6天的数据集预测第7天的RE,而RNN模型使用前45天的数据集预测第46天的RE。使用统计参数,如均方根误差(RMSE)、归一化均方根误差(NRMSE)、Pearson相关系数(CC)和对称平均绝对百分比误差(sMAPE)来评估这两种模型的性能。结果表明,与RNN相比,OKSM在恶劣的空间天气条件下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Range Error in GPS Signals during X-Class Solar Flares Occurred between January–April 2023 Using OKSM and RNN

Positioning, navigation and time are the cornerstones of satellite navigation. These aspects are frequently affected by ionospheric variations caused by solar flares (SF). In this study, we have attempted to predict the range error (RE) caused by ionospheric delay in Global Positioning System (GPS) signals during six different X-class SF that occurred in the 25th solar cycle using two different approaches, namely, a recurrent neural network (RNN) and the ordinary Kriging-based surrogate model (OKSM). The total electron content (TEC) collected from Hyderabad station along with other input parameter includes the Planetary A and K index (Ap and Kp), solar sunspot number (SSN), disturbance storm time index (Dst), and radio flux measured at 10.7 cm (F10.7) were used for prediction. The OKSM uses the previous six days of datasets to predict the RE on the seventh day, whereas the RNN model uses the previous 45 days of datasets to predict the RE on the 46th day. The performance of both models is evaluated using statistical parameters such as root mean square error (RMSE), normalized root mean square error (NRMSE), Pearson’s correlation coefficient (CC), and symmetric mean absolute percentage error (sMAPE). The results indicate that the OKSM performs well in adverse space weather conditions when compared to RNN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
期刊最新文献
A Case Study of Daily and Seasonal Changes in Total Electron Content in Mid-Latitudes Regions in the Period of 2019–2021 Heliogeophysical Features and Viral Epidemics of the 21st Century Trigger Effects of Space Weather Impact on Earth Tectonics and Their Impact on Climate Climate Variations and Solar Activity in the Holocene The Influence of Explosive Processes in Active Regions on the Characteristics of the Magnetic Field in the Umbra of Sunspots Depending on Their Size and Position
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1