石墨烯纳米薄片电极中电解质诱导现象的研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-11-04 DOI:10.1007/s11664-024-11359-4
Muhammad Oneeb, Javed Iqbal, Asifa Mumtaz, Muhammad Ameen, Marhaba Noor, Hamza Nawaz, Haider Ali, M. Usama Jansher
{"title":"石墨烯纳米薄片电极中电解质诱导现象的研究","authors":"Muhammad Oneeb,&nbsp;Javed Iqbal,&nbsp;Asifa Mumtaz,&nbsp;Muhammad Ameen,&nbsp;Marhaba Noor,&nbsp;Hamza Nawaz,&nbsp;Haider Ali,&nbsp;M. Usama Jansher","doi":"10.1007/s11664-024-11359-4","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene has a large surface area, an open interconnect structure, and superior electrical conductivity, making it a promising material for high-performance supercapacitors. The appropriate choice of aqueous electrolyte is essential for its application as an electrode in a supercapacitor. The present study explores the supercapacitive behavior of graphene nanoplatelets in aqueous electrolytes that are acidic (H<sub>2</sub>SO<sub>4</sub>), alkaline (NaOH), and neutral (Na<sub>2</sub>SO<sub>4</sub>). Among these, H<sub>2</sub>SO<sub>4</sub> delivers the maximum capacitance of 292 F/g, followed by NaOH and Na<sub>2</sub>SO<sub>4</sub>, with specific capacitance of 276 F g<sup>−1</sup> and 240 F g<sup>−1</sup>, respectively, from cyclic charge–discharge at a current density of 0.3 A g<sup>-1</sup>. Additionally, this electrode has maximum energy density and power density of 28 Wh kg<sup>−1</sup> and 270 W kg<sup>−1</sup>, and it retains 90% of its capacity over 5000 cycles in H<sub>2</sub>SO<sub>4</sub> electrolytes. An in-depth examination of supercapacitance is provided, along with an equivalent circuit simulation to deduce the behavior of the electrode–electrolyte interface.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"462 - 472"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Electrolyte-Induced Phenomena in Graphene Nanoplatelet-Based Electrodes\",\"authors\":\"Muhammad Oneeb,&nbsp;Javed Iqbal,&nbsp;Asifa Mumtaz,&nbsp;Muhammad Ameen,&nbsp;Marhaba Noor,&nbsp;Hamza Nawaz,&nbsp;Haider Ali,&nbsp;M. Usama Jansher\",\"doi\":\"10.1007/s11664-024-11359-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene has a large surface area, an open interconnect structure, and superior electrical conductivity, making it a promising material for high-performance supercapacitors. The appropriate choice of aqueous electrolyte is essential for its application as an electrode in a supercapacitor. The present study explores the supercapacitive behavior of graphene nanoplatelets in aqueous electrolytes that are acidic (H<sub>2</sub>SO<sub>4</sub>), alkaline (NaOH), and neutral (Na<sub>2</sub>SO<sub>4</sub>). Among these, H<sub>2</sub>SO<sub>4</sub> delivers the maximum capacitance of 292 F/g, followed by NaOH and Na<sub>2</sub>SO<sub>4</sub>, with specific capacitance of 276 F g<sup>−1</sup> and 240 F g<sup>−1</sup>, respectively, from cyclic charge–discharge at a current density of 0.3 A g<sup>-1</sup>. Additionally, this electrode has maximum energy density and power density of 28 Wh kg<sup>−1</sup> and 270 W kg<sup>−1</sup>, and it retains 90% of its capacity over 5000 cycles in H<sub>2</sub>SO<sub>4</sub> electrolytes. An in-depth examination of supercapacitance is provided, along with an equivalent circuit simulation to deduce the behavior of the electrode–electrolyte interface.</p></div>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"54 1\",\"pages\":\"462 - 472\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11664-024-11359-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11359-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯具有较大的表面积,开放的互连结构和优异的导电性,使其成为高性能超级电容器的理想材料。水电解质的适当选择对于其作为超级电容器电极的应用至关重要。本研究探讨了石墨烯纳米片在酸性(H2SO4)、碱性(NaOH)和中性(Na2SO4)水溶液中的超电容行为。其中,在0.3 a g-1的电流密度下,H2SO4的电容最大,为292 F/g,其次是NaOH和Na2SO4,比电容分别为276 F g−1和240 F g−1。此外,该电极的最大能量密度和功率密度分别为28 Wh kg - 1和270 W kg - 1,在H2SO4电解质中循环5000次后仍能保持90%的容量。提供了对超级电容的深入检查,以及等效电路模拟,以推断电极-电解质界面的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Electrolyte-Induced Phenomena in Graphene Nanoplatelet-Based Electrodes

Graphene has a large surface area, an open interconnect structure, and superior electrical conductivity, making it a promising material for high-performance supercapacitors. The appropriate choice of aqueous electrolyte is essential for its application as an electrode in a supercapacitor. The present study explores the supercapacitive behavior of graphene nanoplatelets in aqueous electrolytes that are acidic (H2SO4), alkaline (NaOH), and neutral (Na2SO4). Among these, H2SO4 delivers the maximum capacitance of 292 F/g, followed by NaOH and Na2SO4, with specific capacitance of 276 F g−1 and 240 F g−1, respectively, from cyclic charge–discharge at a current density of 0.3 A g-1. Additionally, this electrode has maximum energy density and power density of 28 Wh kg−1 and 270 W kg−1, and it retains 90% of its capacity over 5000 cycles in H2SO4 electrolytes. An in-depth examination of supercapacitance is provided, along with an equivalent circuit simulation to deduce the behavior of the electrode–electrolyte interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor Enhanced Thermal Sensitivity of Graphite Paint-Based Flexible Thermocouple Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1