{"title":"掺杂锰对用于微波器件的 Ba0.92Sr0.08Ti1-xMnxO3 材料的形态和光学特性的影响","authors":"Mikanshi Chaudhary, Sheela Devi, Sukhdeep Kaur, Shilpi Jindal","doi":"10.1007/s11664-024-11418-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigated the impact of Mn substitution on the morphological, structural, and optical properties of barium strontium titanate (BST) with the formula Ba<sub>0.92</sub>Sr<sub>0.08</sub>Ti<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub> (<i>x</i> = 0.00, 0.10, 0.20) fabricated using the solid-state reaction technique. The morphological and structural properties were studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD). The optical properties of the samples were analyzed using photoluminescence (PL), Fourier transform infrared (FTIR), and Raman spectroscopy. SEM micrographs displayed nearly spherical grains. The phase formation, lattice structure, crystallite size (<i>D</i>), strain (<i>ε</i>), and dislocation density (<i>δ</i>) of the Mn-doped BST ceramics were examined from the recorded XRD patterns using the Scherrer and Williamson–Hall (W–H) models, which showed that the crystallite size increased and the lattice strain and dislocation density decreased with increasing doping concentrations. FTIR results for the pristine sample of BST revealed that the absorption peak at a wavenumber of 470 cm<sup>−1</sup> was shifted to 1250 cm<sup>−1</sup> for Mn-doped BST concentrations. The Raman results indicated that the number of modes decreased with the increase in the Mn<sup>2+</sup> concentrations. PL spectra showed an emission band centered at 60–659 nm, indicating redshift behavior. The analysis using XRD, SEM, FTIR, and Raman spectroscopy revealed that the concentration <i>x</i> = 0.20 is appropriate for use in microwave devices and other electro-optical applications.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"66 - 75"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mn Doping on the Morphological and Optical Properties of Ba0.92Sr0.08Ti1-xMnxO3 Materials for Microwave Device Applications\",\"authors\":\"Mikanshi Chaudhary, Sheela Devi, Sukhdeep Kaur, Shilpi Jindal\",\"doi\":\"10.1007/s11664-024-11418-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigated the impact of Mn substitution on the morphological, structural, and optical properties of barium strontium titanate (BST) with the formula Ba<sub>0.92</sub>Sr<sub>0.08</sub>Ti<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub> (<i>x</i> = 0.00, 0.10, 0.20) fabricated using the solid-state reaction technique. The morphological and structural properties were studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD). The optical properties of the samples were analyzed using photoluminescence (PL), Fourier transform infrared (FTIR), and Raman spectroscopy. SEM micrographs displayed nearly spherical grains. The phase formation, lattice structure, crystallite size (<i>D</i>), strain (<i>ε</i>), and dislocation density (<i>δ</i>) of the Mn-doped BST ceramics were examined from the recorded XRD patterns using the Scherrer and Williamson–Hall (W–H) models, which showed that the crystallite size increased and the lattice strain and dislocation density decreased with increasing doping concentrations. FTIR results for the pristine sample of BST revealed that the absorption peak at a wavenumber of 470 cm<sup>−1</sup> was shifted to 1250 cm<sup>−1</sup> for Mn-doped BST concentrations. The Raman results indicated that the number of modes decreased with the increase in the Mn<sup>2+</sup> concentrations. PL spectra showed an emission band centered at 60–659 nm, indicating redshift behavior. The analysis using XRD, SEM, FTIR, and Raman spectroscopy revealed that the concentration <i>x</i> = 0.20 is appropriate for use in microwave devices and other electro-optical applications.</p></div>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"54 1\",\"pages\":\"66 - 75\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11664-024-11418-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11418-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Mn Doping on the Morphological and Optical Properties of Ba0.92Sr0.08Ti1-xMnxO3 Materials for Microwave Device Applications
In this work, we investigated the impact of Mn substitution on the morphological, structural, and optical properties of barium strontium titanate (BST) with the formula Ba0.92Sr0.08Ti1−xMnxO3 (x = 0.00, 0.10, 0.20) fabricated using the solid-state reaction technique. The morphological and structural properties were studied using scanning electron microscopy (SEM) and x-ray diffraction (XRD). The optical properties of the samples were analyzed using photoluminescence (PL), Fourier transform infrared (FTIR), and Raman spectroscopy. SEM micrographs displayed nearly spherical grains. The phase formation, lattice structure, crystallite size (D), strain (ε), and dislocation density (δ) of the Mn-doped BST ceramics were examined from the recorded XRD patterns using the Scherrer and Williamson–Hall (W–H) models, which showed that the crystallite size increased and the lattice strain and dislocation density decreased with increasing doping concentrations. FTIR results for the pristine sample of BST revealed that the absorption peak at a wavenumber of 470 cm−1 was shifted to 1250 cm−1 for Mn-doped BST concentrations. The Raman results indicated that the number of modes decreased with the increase in the Mn2+ concentrations. PL spectra showed an emission band centered at 60–659 nm, indicating redshift behavior. The analysis using XRD, SEM, FTIR, and Raman spectroscopy revealed that the concentration x = 0.20 is appropriate for use in microwave devices and other electro-optical applications.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.