AFM纳米图制备拓扑绝缘体纳米线:制备工艺及超低温输运性能

Dmitry S. Yakovlev, Aleksei V. Frolov, Ivan A. Nazhestkin, Alexei G. Temiryazev, Andrey P. Orlov, Jonathan Shvartzberg, Sergey E. Dizhur, Vladimir L. Gurtovoi, Razmik Hovhannisyan, Vasily S. Stolyarov
{"title":"AFM纳米图制备拓扑绝缘体纳米线:制备工艺及超低温输运性能","authors":"Dmitry S. Yakovlev,&nbsp;Aleksei V. Frolov,&nbsp;Ivan A. Nazhestkin,&nbsp;Alexei G. Temiryazev,&nbsp;Andrey P. Orlov,&nbsp;Jonathan Shvartzberg,&nbsp;Sergey E. Dizhur,&nbsp;Vladimir L. Gurtovoi,&nbsp;Razmik Hovhannisyan,&nbsp;Vasily S. Stolyarov","doi":"10.1002/apxr.202400108","DOIUrl":null,"url":null,"abstract":"<p>Topological insulator nanostructures became an essential platform for studying novel fundamental effects emerging at the nanoscale. However, conventional nanopatterning techniques, based on electron beam lithography and reactive ion etching of films, have inherent limitations of edge precision, resolution, and modification of surface properties, all of which are critical factors for topological insulator materials. In this study, an alternative approach for the fabrication of ultrathin Bi<sub>2</sub>Se<sub>3</sub> nanoribbons is introduced by utilizing a diamond tip of an atomic force microscope (AFM) to cut atomically thin exfoliated films. This study includes an investigation of the magnetotransport properties of ultrathin Bi<sub>2</sub>Se<sub>3</sub> topological insulator nanoribbons with controlled cross-sections at ultra-low 14 mK) temperatures. Current-dependent magnetoresistance oscillations are observed with the weak antilocalization effect, confirming the coherent propagation of 2D electrons around the nanoribbon surface's perimeter and the robustness of topologically protected surface states. In contrast to conventional lithography methods, this approach does not require a highly controlled clean room environment and can be executed under ambient conditions. Importantly, this method facilitates the precise patterning and can be applied to a wide range of 2D materials.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400108","citationCount":"0","resultStr":"{\"title\":\"Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties\",\"authors\":\"Dmitry S. Yakovlev,&nbsp;Aleksei V. Frolov,&nbsp;Ivan A. Nazhestkin,&nbsp;Alexei G. Temiryazev,&nbsp;Andrey P. Orlov,&nbsp;Jonathan Shvartzberg,&nbsp;Sergey E. Dizhur,&nbsp;Vladimir L. Gurtovoi,&nbsp;Razmik Hovhannisyan,&nbsp;Vasily S. Stolyarov\",\"doi\":\"10.1002/apxr.202400108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Topological insulator nanostructures became an essential platform for studying novel fundamental effects emerging at the nanoscale. However, conventional nanopatterning techniques, based on electron beam lithography and reactive ion etching of films, have inherent limitations of edge precision, resolution, and modification of surface properties, all of which are critical factors for topological insulator materials. In this study, an alternative approach for the fabrication of ultrathin Bi<sub>2</sub>Se<sub>3</sub> nanoribbons is introduced by utilizing a diamond tip of an atomic force microscope (AFM) to cut atomically thin exfoliated films. This study includes an investigation of the magnetotransport properties of ultrathin Bi<sub>2</sub>Se<sub>3</sub> topological insulator nanoribbons with controlled cross-sections at ultra-low 14 mK) temperatures. Current-dependent magnetoresistance oscillations are observed with the weak antilocalization effect, confirming the coherent propagation of 2D electrons around the nanoribbon surface's perimeter and the robustness of topologically protected surface states. In contrast to conventional lithography methods, this approach does not require a highly controlled clean room environment and can be executed under ambient conditions. Importantly, this method facilitates the precise patterning and can be applied to a wide range of 2D materials.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑绝缘体纳米结构成为研究纳米尺度上出现的新基本效应的重要平台。然而,传统的基于电子束光刻和反应离子刻蚀薄膜的纳米图形技术在边缘精度、分辨率和表面性质的修饰方面存在固有的局限性,这些都是拓扑绝缘体材料的关键因素。在这项研究中,介绍了一种制造超薄Bi2Se3纳米带的替代方法,即利用原子力显微镜(AFM)的金刚石尖端切割原子薄的剥离膜。本研究包括在超低14 mK温度下研究具有控制横截面的超薄Bi2Se3拓扑绝缘体纳米带的磁输运特性。在弱反局域效应下观察到电流相关磁阻振荡,证实了二维电子在纳米带表面周长周围的相干传播和拓扑保护表面态的鲁棒性。与传统的光刻方法相比,这种方法不需要高度控制的洁净室环境,可以在环境条件下进行。重要的是,这种方法有助于精确的图案化,可以应用于广泛的二维材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties

Topological insulator nanostructures became an essential platform for studying novel fundamental effects emerging at the nanoscale. However, conventional nanopatterning techniques, based on electron beam lithography and reactive ion etching of films, have inherent limitations of edge precision, resolution, and modification of surface properties, all of which are critical factors for topological insulator materials. In this study, an alternative approach for the fabrication of ultrathin Bi2Se3 nanoribbons is introduced by utilizing a diamond tip of an atomic force microscope (AFM) to cut atomically thin exfoliated films. This study includes an investigation of the magnetotransport properties of ultrathin Bi2Se3 topological insulator nanoribbons with controlled cross-sections at ultra-low 14 mK) temperatures. Current-dependent magnetoresistance oscillations are observed with the weak antilocalization effect, confirming the coherent propagation of 2D electrons around the nanoribbon surface's perimeter and the robustness of topologically protected surface states. In contrast to conventional lithography methods, this approach does not require a highly controlled clean room environment and can be executed under ambient conditions. Importantly, this method facilitates the precise patterning and can be applied to a wide range of 2D materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Hard Ferromagnetism in FePS3 Induced by Non-Magnetic Molecular Intercalation (Adv. Phys. Res. 2/2025) Superconducting Nanowire Detection of Neutral Atoms and Molecules via Their Internal and Kinetic Energy in the eV Range (Adv. Phys. Res. 2/2025) Issue Information (Adv. Phys. Res. 2/2025) A Near Room Temperature Curie Temperature in a New Type of Diluted Magnetic Semiconductor (Ba,K)(Zn,Mn)2As2 (Adv. Phys. Res. 1/2025) Issue Information (Adv. Phys. Res. 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1