利用 BIM 和多传感器四足机器人进行室内检测的自动现实捕捉

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-12-19 DOI:10.1016/j.autcon.2024.105930
Zhengyi Chen, Changhao Song, Boyu Wang, Xingyu Tao, Xiao Zhang, Fangzhou Lin, Jack C.P. Cheng
{"title":"利用 BIM 和多传感器四足机器人进行室内检测的自动现实捕捉","authors":"Zhengyi Chen, Changhao Song, Boyu Wang, Xingyu Tao, Xiao Zhang, Fangzhou Lin, Jack C.P. Cheng","doi":"10.1016/j.autcon.2024.105930","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time, cost-effective navigation and localization framework tailored for quadruped robot-based indoor inspections. A 4D Building Information Model is utilized to generate a navigation map, supporting robotic pose initialization and path planning. The framework integrates a cost-effective, multi-sensor SLAM system that combines inertial-corrected 2D laser scans with fused laser and visual-inertial SLAM. Additionally, a deep-learning-based object recognition model is trained for multi-dimensional reality capture, enhancing comprehensive indoor element inspection. Validated on a quadruped robot equipped with an RGB-D camera, IMU, and 2D LiDAR in an academic setting, the framework achieved collision-free navigation, reduced localization drift by 71.77 % compared to traditional SLAM methods, and provided accurate large-scale point cloud reconstruction with 0.119-m precision. Furthermore, the object detection model attained mean average precision scores of 73.7 % for 2D detection and 62.9 % for 3D detection.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated reality capture for indoor inspection using BIM and a multi-sensor quadruped robot\",\"authors\":\"Zhengyi Chen, Changhao Song, Boyu Wang, Xingyu Tao, Xiao Zhang, Fangzhou Lin, Jack C.P. Cheng\",\"doi\":\"10.1016/j.autcon.2024.105930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time, cost-effective navigation and localization framework tailored for quadruped robot-based indoor inspections. A 4D Building Information Model is utilized to generate a navigation map, supporting robotic pose initialization and path planning. The framework integrates a cost-effective, multi-sensor SLAM system that combines inertial-corrected 2D laser scans with fused laser and visual-inertial SLAM. Additionally, a deep-learning-based object recognition model is trained for multi-dimensional reality capture, enhancing comprehensive indoor element inspection. Validated on a quadruped robot equipped with an RGB-D camera, IMU, and 2D LiDAR in an academic setting, the framework achieved collision-free navigation, reduced localization drift by 71.77 % compared to traditional SLAM methods, and provided accurate large-scale point cloud reconstruction with 0.119-m precision. Furthermore, the object detection model attained mean average precision scores of 73.7 % for 2D detection and 62.9 % for 3D detection.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105930\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105930","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种为基于四足机器人的室内检测量身定制的实时、经济高效的导航和定位框架。利用4D建筑信息模型生成导航地图,支持机器人姿态初始化和路径规划。该框架集成了一个具有成本效益的多传感器SLAM系统,将惯性校正的2D激光扫描与融合激光和视觉惯性SLAM相结合。此外,还训练了基于深度学习的物体识别模型,用于多维现实捕获,增强室内元素的综合检测。在一个配备RGB-D相机、IMU和2D LiDAR的四足机器人上进行了学术环境验证,该框架实现了无碰撞导航,与传统SLAM方法相比,定位漂移减少了71.77%,并提供了精度为0.119 m的精确大尺度点云重建。此外,目标检测模型在二维检测和三维检测方面的平均精度分别达到73.7%和62.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated reality capture for indoor inspection using BIM and a multi-sensor quadruped robot
This paper presents a real-time, cost-effective navigation and localization framework tailored for quadruped robot-based indoor inspections. A 4D Building Information Model is utilized to generate a navigation map, supporting robotic pose initialization and path planning. The framework integrates a cost-effective, multi-sensor SLAM system that combines inertial-corrected 2D laser scans with fused laser and visual-inertial SLAM. Additionally, a deep-learning-based object recognition model is trained for multi-dimensional reality capture, enhancing comprehensive indoor element inspection. Validated on a quadruped robot equipped with an RGB-D camera, IMU, and 2D LiDAR in an academic setting, the framework achieved collision-free navigation, reduced localization drift by 71.77 % compared to traditional SLAM methods, and provided accurate large-scale point cloud reconstruction with 0.119-m precision. Furthermore, the object detection model attained mean average precision scores of 73.7 % for 2D detection and 62.9 % for 3D detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1