以物理为指导的深度学习用于既有地铁线下大直径隧道的生成式设计

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2024-12-17 DOI:10.1016/j.autcon.2024.105901
Limao Zhang, Jiaqi Wang, Zhuang Xia, Xieqing Song
{"title":"以物理为指导的深度学习用于既有地铁线下大直径隧道的生成式设计","authors":"Limao Zhang, Jiaqi Wang, Zhuang Xia, Xieqing Song","doi":"10.1016/j.autcon.2024.105901","DOIUrl":null,"url":null,"abstract":"The overlapping construction of large-diameter tunnels is inevitable, but the construction control faces great challenges due to the complexity of underground environments. A generative design method for large-diameter tunnels under existing metro lines based on physic-guided deep learning is proposed, aiming at optimizing tunnel layouts from a physical perspective to ensure effective construction control. A topology-optimized model dataset considering soil uncertainties is fed into a physics-guided Wasserstein generative adversarial network (PGWGAN) for training, producing numerous physically consistent schemes. The optimal scheme is selected using the multiple-attribute decision-making (MADM) method under multi-working conditions. A case study on large-diameter tunnel construction demonstrates the method's feasibility, showing that it meets the safety requirements across various conditions and achieves significant improvement. This paper contributes a physics-guided generative design method for large-diameter tunnel overlapping construction. It accounts for multiple working conditions and includes an evaluation module that integrates parametric finite element analysis (FEA) with multi-attribute evaluation.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"83 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-guided deep learning for generative design of large-diameter tunnels under existing metro lines\",\"authors\":\"Limao Zhang, Jiaqi Wang, Zhuang Xia, Xieqing Song\",\"doi\":\"10.1016/j.autcon.2024.105901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overlapping construction of large-diameter tunnels is inevitable, but the construction control faces great challenges due to the complexity of underground environments. A generative design method for large-diameter tunnels under existing metro lines based on physic-guided deep learning is proposed, aiming at optimizing tunnel layouts from a physical perspective to ensure effective construction control. A topology-optimized model dataset considering soil uncertainties is fed into a physics-guided Wasserstein generative adversarial network (PGWGAN) for training, producing numerous physically consistent schemes. The optimal scheme is selected using the multiple-attribute decision-making (MADM) method under multi-working conditions. A case study on large-diameter tunnel construction demonstrates the method's feasibility, showing that it meets the safety requirements across various conditions and achieves significant improvement. This paper contributes a physics-guided generative design method for large-diameter tunnel overlapping construction. It accounts for multiple working conditions and includes an evaluation module that integrates parametric finite element analysis (FEA) with multi-attribute evaluation.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105901\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105901","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大直径隧道的重叠施工是不可避免的,但由于地下环境的复杂性,施工控制面临着很大的挑战。提出了一种基于物理引导深度学习的既有地铁下大直径隧道生成设计方法,旨在从物理角度优化隧道布局,保证施工有效控制。将考虑土壤不确定性的拓扑优化模型数据集输入到物理引导的Wasserstein生成对抗网络(PGWGAN)中进行训练,产生许多物理上一致的方案。采用多工况下的多属性决策(MADM)方法选择最优方案。通过对大直径隧道施工的实例分析,验证了该方法的可行性,表明该方法满足了各种工况下的安全要求,并取得了显著的改善效果。提出了一种基于物理指导的大直径隧道重叠施工生成设计方法。它考虑了多种工况,包括一个将参数有限元分析(FEA)与多属性评估相结合的评估模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-guided deep learning for generative design of large-diameter tunnels under existing metro lines
The overlapping construction of large-diameter tunnels is inevitable, but the construction control faces great challenges due to the complexity of underground environments. A generative design method for large-diameter tunnels under existing metro lines based on physic-guided deep learning is proposed, aiming at optimizing tunnel layouts from a physical perspective to ensure effective construction control. A topology-optimized model dataset considering soil uncertainties is fed into a physics-guided Wasserstein generative adversarial network (PGWGAN) for training, producing numerous physically consistent schemes. The optimal scheme is selected using the multiple-attribute decision-making (MADM) method under multi-working conditions. A case study on large-diameter tunnel construction demonstrates the method's feasibility, showing that it meets the safety requirements across various conditions and achieves significant improvement. This paper contributes a physics-guided generative design method for large-diameter tunnel overlapping construction. It accounts for multiple working conditions and includes an evaluation module that integrates parametric finite element analysis (FEA) with multi-attribute evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1