结合电阻率层析成像和被动地震,确定雅芳河临界区观测站内一座深风化红土丘陵的地下结构特征

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Processes and Landforms Pub Date : 2024-11-19 DOI:10.1002/esp.6026
Jessie Weller, Sara Jakica, Sally Thompson, Matthias Leopold
{"title":"结合电阻率层析成像和被动地震,确定雅芳河临界区观测站内一座深风化红土丘陵的地下结构特征","authors":"Jessie Weller,&nbsp;Sara Jakica,&nbsp;Sally Thompson,&nbsp;Matthias Leopold","doi":"10.1002/esp.6026","DOIUrl":null,"url":null,"abstract":"<p>Observing the subsurface architecture of the deep Critical Zone (CZ), which lies beyond the uppermost layer of accessible soil, is a complex but crucial task. Near-surface geophysics offers an alternative to accessing the deep CZ at scales relevant to fluid, nutrient and gas transport. As geophysical instruments are sensitive to different subsurface physical properties, their combination can enhance insight into CZ architecture. However, the agreement between and complementarity of multiple geophysical techniques has not been widely assessed for CZ-related questions. This study employed geophysics to image a highly weathered lateritic hill rich in iron oxides developed from Archean granite within the Avon River Critical Zone Observatory, Western Australia. Data gathered from an electrical resistivity tomography (ERT) and horizontal-to-vertical-spectral-ratio (HVSR) passive seismic transect were used to visualise CZ architecture through specific resistivity values and ambient noise contrasts. Both techniques revealed a notable degree of lateral variability consistent with the formation of the ~3–4 m thick duricrust-capped hilltop, the creation of gullies in the sodic material of the pallid zone exposed along the slope and the deposition of ~11 m thick colluvial sediment at the foot slope. Calculated bedrock depth was consistent between the HVSR and ERT instruments along the hilltop plateau but varied from ~23 m to 31 m on the slope and 32 m to 39 m at the foot slope, respectively. Overall, the vertical variation depicted by the ERT, including the differentiation of two layers within the lateritic weathering profile - the pallid zone and saprolite – made up for the inaccuracy of the HVSR technique in depicting layers of similar composition. Moreover, the HVSR method clearly depicted bedrock depth, overcoming the partial masking of the bedrock by saline groundwater in the ERT model. The complementarity of these two methods allowed the development of a detailed conceptual model of subsurface CZ architecture within a saline lateritic weathering profile.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5186-5201"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining electrical resistivity tomography and passive seismic to characterise the subsurface architecture of a deeply weathered lateritic hill within the Avon River critical zone observatory\",\"authors\":\"Jessie Weller,&nbsp;Sara Jakica,&nbsp;Sally Thompson,&nbsp;Matthias Leopold\",\"doi\":\"10.1002/esp.6026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observing the subsurface architecture of the deep Critical Zone (CZ), which lies beyond the uppermost layer of accessible soil, is a complex but crucial task. Near-surface geophysics offers an alternative to accessing the deep CZ at scales relevant to fluid, nutrient and gas transport. As geophysical instruments are sensitive to different subsurface physical properties, their combination can enhance insight into CZ architecture. However, the agreement between and complementarity of multiple geophysical techniques has not been widely assessed for CZ-related questions. This study employed geophysics to image a highly weathered lateritic hill rich in iron oxides developed from Archean granite within the Avon River Critical Zone Observatory, Western Australia. Data gathered from an electrical resistivity tomography (ERT) and horizontal-to-vertical-spectral-ratio (HVSR) passive seismic transect were used to visualise CZ architecture through specific resistivity values and ambient noise contrasts. Both techniques revealed a notable degree of lateral variability consistent with the formation of the ~3–4 m thick duricrust-capped hilltop, the creation of gullies in the sodic material of the pallid zone exposed along the slope and the deposition of ~11 m thick colluvial sediment at the foot slope. Calculated bedrock depth was consistent between the HVSR and ERT instruments along the hilltop plateau but varied from ~23 m to 31 m on the slope and 32 m to 39 m at the foot slope, respectively. Overall, the vertical variation depicted by the ERT, including the differentiation of two layers within the lateritic weathering profile - the pallid zone and saprolite – made up for the inaccuracy of the HVSR technique in depicting layers of similar composition. Moreover, the HVSR method clearly depicted bedrock depth, overcoming the partial masking of the bedrock by saline groundwater in the ERT model. The complementarity of these two methods allowed the development of a detailed conceptual model of subsurface CZ architecture within a saline lateritic weathering profile.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"49 15\",\"pages\":\"5186-5201\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.6026\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6026","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining electrical resistivity tomography and passive seismic to characterise the subsurface architecture of a deeply weathered lateritic hill within the Avon River critical zone observatory

Observing the subsurface architecture of the deep Critical Zone (CZ), which lies beyond the uppermost layer of accessible soil, is a complex but crucial task. Near-surface geophysics offers an alternative to accessing the deep CZ at scales relevant to fluid, nutrient and gas transport. As geophysical instruments are sensitive to different subsurface physical properties, their combination can enhance insight into CZ architecture. However, the agreement between and complementarity of multiple geophysical techniques has not been widely assessed for CZ-related questions. This study employed geophysics to image a highly weathered lateritic hill rich in iron oxides developed from Archean granite within the Avon River Critical Zone Observatory, Western Australia. Data gathered from an electrical resistivity tomography (ERT) and horizontal-to-vertical-spectral-ratio (HVSR) passive seismic transect were used to visualise CZ architecture through specific resistivity values and ambient noise contrasts. Both techniques revealed a notable degree of lateral variability consistent with the formation of the ~3–4 m thick duricrust-capped hilltop, the creation of gullies in the sodic material of the pallid zone exposed along the slope and the deposition of ~11 m thick colluvial sediment at the foot slope. Calculated bedrock depth was consistent between the HVSR and ERT instruments along the hilltop plateau but varied from ~23 m to 31 m on the slope and 32 m to 39 m at the foot slope, respectively. Overall, the vertical variation depicted by the ERT, including the differentiation of two layers within the lateritic weathering profile - the pallid zone and saprolite – made up for the inaccuracy of the HVSR technique in depicting layers of similar composition. Moreover, the HVSR method clearly depicted bedrock depth, overcoming the partial masking of the bedrock by saline groundwater in the ERT model. The complementarity of these two methods allowed the development of a detailed conceptual model of subsurface CZ architecture within a saline lateritic weathering profile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
期刊最新文献
Issue Information Neogene drainage evolution of SW Anatolia (Türkiye): Integration of morphotectonics, drainage and denudation analyses Predicting flow resistance in rough-bed rivers from topographic roughness: Review and open questions Assessing proxy methods for measuring bedrock erodibility in fluvial impact erosion Controls on glacial kettle morphology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1