{"title":"黄连素促进原始卵泡激活,增加老年小鼠的排卵卵母细胞数量。","authors":"Shuang Liu, Weiyong Wang, Huiyu Liu, Hongwei Wei, Yashuang Weng, Wenjun Zhou, Xiaodan Zhang, Sihui He, Ye Chen, Yahong Wang, Meijia Zhang, Xin Chen","doi":"10.1186/s10020-024-01042-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear.</p><p><strong>Methods: </strong>The role of BBR on primordial activation was investigated by neonatal mouse ovary culture and intraperitoneal injection, and by human ovarian fragment culture. Furthermore, the effect of BBR on the quantity of ovulated oocytes was investigated by the intragastric administration of aged mice.</p><p><strong>Results: </strong>BBR in vitro culture and in vivo intraperitoneal injection significantly increased growing follicle number and phosphorylated protein kinase B (p-Akt) levels in neonatal mouse ovaries. BBR also significantly increased the relative fluorescence intensities of p-Akt in the oocytes of primordial follicles. BBR-increased the number of growing follicles and the levels of p-Akt were blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Furthermore, BBR intragastric administration significantly increased the quantity of ovulated oocytes in aged mice. Moreover, BBR significantly increased growing follicle proportion and p-Akt levels in cultured human ovarian fragments.</p><p><strong>Conclusion: </strong>BBR promotes mouse and human primordial follicle activation through the PI3K/Akt pathway in oocytes, and improves the quantity of ovulated oocytes in aged mice. Our results suggest a potential use of oral medicine BBR to improve fertility in POI patients and aged women.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"251"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Berberine promotes primordial follicle activation and increases ovulated oocyte quantity in aged mice.\",\"authors\":\"Shuang Liu, Weiyong Wang, Huiyu Liu, Hongwei Wei, Yashuang Weng, Wenjun Zhou, Xiaodan Zhang, Sihui He, Ye Chen, Yahong Wang, Meijia Zhang, Xin Chen\",\"doi\":\"10.1186/s10020-024-01042-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear.</p><p><strong>Methods: </strong>The role of BBR on primordial activation was investigated by neonatal mouse ovary culture and intraperitoneal injection, and by human ovarian fragment culture. Furthermore, the effect of BBR on the quantity of ovulated oocytes was investigated by the intragastric administration of aged mice.</p><p><strong>Results: </strong>BBR in vitro culture and in vivo intraperitoneal injection significantly increased growing follicle number and phosphorylated protein kinase B (p-Akt) levels in neonatal mouse ovaries. BBR also significantly increased the relative fluorescence intensities of p-Akt in the oocytes of primordial follicles. BBR-increased the number of growing follicles and the levels of p-Akt were blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Furthermore, BBR intragastric administration significantly increased the quantity of ovulated oocytes in aged mice. Moreover, BBR significantly increased growing follicle proportion and p-Akt levels in cultured human ovarian fragments.</p><p><strong>Conclusion: </strong>BBR promotes mouse and human primordial follicle activation through the PI3K/Akt pathway in oocytes, and improves the quantity of ovulated oocytes in aged mice. Our results suggest a potential use of oral medicine BBR to improve fertility in POI patients and aged women.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"30 1\",\"pages\":\"251\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-01042-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-01042-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Berberine promotes primordial follicle activation and increases ovulated oocyte quantity in aged mice.
Background: Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear.
Methods: The role of BBR on primordial activation was investigated by neonatal mouse ovary culture and intraperitoneal injection, and by human ovarian fragment culture. Furthermore, the effect of BBR on the quantity of ovulated oocytes was investigated by the intragastric administration of aged mice.
Results: BBR in vitro culture and in vivo intraperitoneal injection significantly increased growing follicle number and phosphorylated protein kinase B (p-Akt) levels in neonatal mouse ovaries. BBR also significantly increased the relative fluorescence intensities of p-Akt in the oocytes of primordial follicles. BBR-increased the number of growing follicles and the levels of p-Akt were blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Furthermore, BBR intragastric administration significantly increased the quantity of ovulated oocytes in aged mice. Moreover, BBR significantly increased growing follicle proportion and p-Akt levels in cultured human ovarian fragments.
Conclusion: BBR promotes mouse and human primordial follicle activation through the PI3K/Akt pathway in oocytes, and improves the quantity of ovulated oocytes in aged mice. Our results suggest a potential use of oral medicine BBR to improve fertility in POI patients and aged women.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.