在使用0.35T MR-linac的在线自适应放疗期间,自动每日剂量累积工作流程用于治疗质量保证。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Applied Clinical Medical Physics Pub Date : 2024-12-20 DOI:10.1002/acm2.14594
Mojtaba Behzadipour, Tianjun Ma, Rabten K Datsang, Brandon Lee, Dane Pittock, Elisabeth Weiss, William Y Song
{"title":"在使用0.35T MR-linac的在线自适应放疗期间,自动每日剂量累积工作流程用于治疗质量保证。","authors":"Mojtaba Behzadipour, Tianjun Ma, Rabten K Datsang, Brandon Lee, Dane Pittock, Elisabeth Weiss, William Y Song","doi":"10.1002/acm2.14594","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study assesses a novel, automated dose accumulation process during MR-guided online adaptive radiotherapy (MRgART) for prostate cancer, focusing on inter-fractional anatomical changes and discrepancies between delivered and planned doses.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on seven prostate cancer patients treated with a five-fraction stereotactic body radiation therapy (SBRT), using a 0.35T MRIdian MR-LINAC system. Daily plans were adapted when dose thresholds were exceeded. Planning MRI (pMRI) and daily MRIs (dMRIs) were imported into MIM software for automated and manual dose accumulation procedures. Rigid and deformable image registrations were followed by dose accumulation to compare delivered and planned doses. Manual and automated image registrations were compared by calculating the Hausdorff distance (HD), Jaccard, and DICE metrics.</p><p><strong>Results: </strong>Moderate discrepancies in dosimetric parameters for the planning target volume (PTV) were observed between auto-accumulated and planned doses, such as <math> <semantics><msub><mi>D</mi> <mrow><mn>95</mn> <mo>%</mo></mrow> </msub> <annotation>${D}_{95\\% }$</annotation></semantics> </math> and <math> <semantics><msub><mi>D</mi> <mrow><mn>0.03</mn> <mrow><mspace></mspace> <mi>cc</mi></mrow> </mrow> </msub> <annotation>${D}_{0.03{\\mathrm{\\ cc}}}$</annotation></semantics> </math> , with average differences of <math> <semantics><mrow><mo>-</mo> <mn>0.60</mn> <mo>±</mo> <mn>0.61</mn></mrow> <annotation>$ - 0.60 \\pm 0.61$</annotation></semantics> </math>  Gy and <math> <semantics><mrow><mo>-</mo> <mn>1.31</mn> <mo>±</mo> <mn>0.42</mn></mrow> <annotation>$ - 1.31 \\pm 0.42$</annotation></semantics> </math>  Gy, respectively. Volume differences of <math> <semantics><msub><mi>V</mi> <mrow><mn>34.4</mn> <mspace></mspace> <mi>Gy</mi></mrow> </msub> <annotation>${V}_{34.4\\ {\\mathrm{Gy}}}$</annotation></semantics> </math> and <math> <semantics><msub><mi>V</mi> <mrow><mn>36.25</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{36.25{\\mathrm{\\ Gy}}}$</annotation></semantics> </math> indicated that auto-accumulated doses consistently had lower numbers compared to planned doses, with mean discrepancies of <math> <semantics><mrow><mo>-</mo> <mn>1.80</mn> <mo>%</mo> <mo>±</mo> <mn>1.05</mn> <mo>%</mo></mrow> <annotation>$ - 1.80\\% \\pm 1.05\\% $</annotation></semantics> </math> and <math> <semantics><mrow><mo>-</mo> <mn>2.82</mn> <mo>%</mo> <mo>±</mo> <mn>1.72</mn> <mo>%</mo></mrow> <annotation>$ - 2.82\\% \\pm 1.72\\% $</annotation></semantics> </math> , respectively. Organs at risk (OAR) dosimetric parameters exhibited higher dose volumes in auto-accumulated doses, with moderate differences (planned [cc] vs. auto-accumulated [cc]) observed in parameters such as urethra PRV <math> <semantics><msub><mi>V</mi> <mrow><mn>8.4</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{8.4{\\mathrm{\\ Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>4.33</mn> <mo>±</mo> <mn>1.90</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>4.34</mn> <mo>±</mo> <mn>1.90</mn></mrow> <mo>)</mo></mrow> <annotation>$( {4.33 \\pm 1.90\\ {\\mathrm{vs}}.\\ 4.34 \\pm 1.90} )$</annotation></semantics> </math> , rectum <math> <semantics><msub><mi>V</mi> <mrow><mn>24</mn> <mspace></mspace> <mi>Gy</mi></mrow> </msub> <annotation>${V}_{24\\ {\\mathrm{Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>1.17</mn> <mo>±</mo> <mn>1.53</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>1.74</mn> <mo>±</mo> <mn>1.91</mn></mrow> <mo>)</mo></mrow> <annotation>$( {1.17 \\pm 1.53\\ {\\mathrm{vs}}.\\ 1.74 \\pm 1.91} )$</annotation></semantics> </math> and rectum <math> <semantics><msub><mi>V</mi> <mrow><mn>28.2</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{28.2{\\mathrm{\\ Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>0.38</mn> <mo>±</mo> <mn>0.55</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>0.59</mn> <mo>±</mo> <mn>0.71</mn></mrow> <mo>)</mo></mrow> <annotation>$( {0.38 \\pm 0.55\\ {\\mathrm{vs}}.\\ 0.59 \\pm 0.71} )$</annotation></semantics> </math> . The comparison between manually and auto-accumulated doses revealed negligible variations, as also indicated by strong concordance in geometric indices and t-test p-values above 0.7.</p><p><strong>Conclusion: </strong>The automated workflow, developed in collaboration with MIM Software Inc., demonstrates high accuracy compared to manual accumulation. The moderate differences observed between planned and accumulated doses emphasize the need for accurate dose accumulation for adaptive plans.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14594"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated daily dose accumulation workflow for treatment quality assurance during online adaptive radiotherapy with a 0.35T MR-linac.\",\"authors\":\"Mojtaba Behzadipour, Tianjun Ma, Rabten K Datsang, Brandon Lee, Dane Pittock, Elisabeth Weiss, William Y Song\",\"doi\":\"10.1002/acm2.14594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study assesses a novel, automated dose accumulation process during MR-guided online adaptive radiotherapy (MRgART) for prostate cancer, focusing on inter-fractional anatomical changes and discrepancies between delivered and planned doses.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on seven prostate cancer patients treated with a five-fraction stereotactic body radiation therapy (SBRT), using a 0.35T MRIdian MR-LINAC system. Daily plans were adapted when dose thresholds were exceeded. Planning MRI (pMRI) and daily MRIs (dMRIs) were imported into MIM software for automated and manual dose accumulation procedures. Rigid and deformable image registrations were followed by dose accumulation to compare delivered and planned doses. Manual and automated image registrations were compared by calculating the Hausdorff distance (HD), Jaccard, and DICE metrics.</p><p><strong>Results: </strong>Moderate discrepancies in dosimetric parameters for the planning target volume (PTV) were observed between auto-accumulated and planned doses, such as <math> <semantics><msub><mi>D</mi> <mrow><mn>95</mn> <mo>%</mo></mrow> </msub> <annotation>${D}_{95\\\\% }$</annotation></semantics> </math> and <math> <semantics><msub><mi>D</mi> <mrow><mn>0.03</mn> <mrow><mspace></mspace> <mi>cc</mi></mrow> </mrow> </msub> <annotation>${D}_{0.03{\\\\mathrm{\\\\ cc}}}$</annotation></semantics> </math> , with average differences of <math> <semantics><mrow><mo>-</mo> <mn>0.60</mn> <mo>±</mo> <mn>0.61</mn></mrow> <annotation>$ - 0.60 \\\\pm 0.61$</annotation></semantics> </math>  Gy and <math> <semantics><mrow><mo>-</mo> <mn>1.31</mn> <mo>±</mo> <mn>0.42</mn></mrow> <annotation>$ - 1.31 \\\\pm 0.42$</annotation></semantics> </math>  Gy, respectively. Volume differences of <math> <semantics><msub><mi>V</mi> <mrow><mn>34.4</mn> <mspace></mspace> <mi>Gy</mi></mrow> </msub> <annotation>${V}_{34.4\\\\ {\\\\mathrm{Gy}}}$</annotation></semantics> </math> and <math> <semantics><msub><mi>V</mi> <mrow><mn>36.25</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{36.25{\\\\mathrm{\\\\ Gy}}}$</annotation></semantics> </math> indicated that auto-accumulated doses consistently had lower numbers compared to planned doses, with mean discrepancies of <math> <semantics><mrow><mo>-</mo> <mn>1.80</mn> <mo>%</mo> <mo>±</mo> <mn>1.05</mn> <mo>%</mo></mrow> <annotation>$ - 1.80\\\\% \\\\pm 1.05\\\\% $</annotation></semantics> </math> and <math> <semantics><mrow><mo>-</mo> <mn>2.82</mn> <mo>%</mo> <mo>±</mo> <mn>1.72</mn> <mo>%</mo></mrow> <annotation>$ - 2.82\\\\% \\\\pm 1.72\\\\% $</annotation></semantics> </math> , respectively. Organs at risk (OAR) dosimetric parameters exhibited higher dose volumes in auto-accumulated doses, with moderate differences (planned [cc] vs. auto-accumulated [cc]) observed in parameters such as urethra PRV <math> <semantics><msub><mi>V</mi> <mrow><mn>8.4</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{8.4{\\\\mathrm{\\\\ Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>4.33</mn> <mo>±</mo> <mn>1.90</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>4.34</mn> <mo>±</mo> <mn>1.90</mn></mrow> <mo>)</mo></mrow> <annotation>$( {4.33 \\\\pm 1.90\\\\ {\\\\mathrm{vs}}.\\\\ 4.34 \\\\pm 1.90} )$</annotation></semantics> </math> , rectum <math> <semantics><msub><mi>V</mi> <mrow><mn>24</mn> <mspace></mspace> <mi>Gy</mi></mrow> </msub> <annotation>${V}_{24\\\\ {\\\\mathrm{Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>1.17</mn> <mo>±</mo> <mn>1.53</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>1.74</mn> <mo>±</mo> <mn>1.91</mn></mrow> <mo>)</mo></mrow> <annotation>$( {1.17 \\\\pm 1.53\\\\ {\\\\mathrm{vs}}.\\\\ 1.74 \\\\pm 1.91} )$</annotation></semantics> </math> and rectum <math> <semantics><msub><mi>V</mi> <mrow><mn>28.2</mn> <mrow><mspace></mspace> <mi>Gy</mi></mrow> </mrow> </msub> <annotation>${V}_{28.2{\\\\mathrm{\\\\ Gy}}}$</annotation></semantics> </math> at <math> <semantics><mrow><mo>(</mo> <mrow><mn>0.38</mn> <mo>±</mo> <mn>0.55</mn> <mspace></mspace> <mi>vs</mi> <mo>.</mo> <mspace></mspace> <mn>0.59</mn> <mo>±</mo> <mn>0.71</mn></mrow> <mo>)</mo></mrow> <annotation>$( {0.38 \\\\pm 0.55\\\\ {\\\\mathrm{vs}}.\\\\ 0.59 \\\\pm 0.71} )$</annotation></semantics> </math> . The comparison between manually and auto-accumulated doses revealed negligible variations, as also indicated by strong concordance in geometric indices and t-test p-values above 0.7.</p><p><strong>Conclusion: </strong>The automated workflow, developed in collaboration with MIM Software Inc., demonstrates high accuracy compared to manual accumulation. The moderate differences observed between planned and accumulated doses emphasize the need for accurate dose accumulation for adaptive plans.</p>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\" \",\"pages\":\"e14594\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/acm2.14594\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究评估了磁共振引导在线适应性放疗(MRgART)治疗前列腺癌过程中一种新型的自动剂量积累过程,重点研究了分级间解剖变化以及交付剂量和计划剂量之间的差异。方法:回顾性分析7例前列腺癌患者在0.35T MRIdian MR-LINAC系统下接受五段式立体定向放射治疗(SBRT)的临床资料。超过剂量阈值时,调整每日计划。将计划MRI (pMRI)和每日MRI (dmri)导入MIM软件,进行自动和手动剂量累积程序。刚性和可变形图像配准之后进行剂量累积,以比较交付和计划剂量。通过计算Hausdorff距离(HD)、Jaccard和DICE指标来比较手动和自动图像配准。结果:计划目标体积(PTV)的剂量学参数在自动累积剂量和计划剂量之间存在中等差异,如D 95% ${D}_{95\%}$和D 0.03 cc ${D}_{0.03}} m{\ cc}} $,平均差异分别为- 0.60±0.61$ - 0.60 $ pm 0.61$ Gy和- 1.31±0.42$ $ pm 0.42$ Gy。v34.4 Gy ${V}_{34.4\ \ mathm {Gy}} $和v36.25 Gy ${V}_{36.25 \ mathm {\ Gy}} $的体积差异表明,与计划剂量相比,自动累积剂量始终较低,平均差异分别为- 1.80%±1.05% $ - 1.80% \% \pm 1.05\% $和- 2.82%±1.72% $ - 2.82% \% \pm 1.72\% $。危险器官(OAR)剂量学参数在自动累积剂量中显示出更高的剂量体积,在诸如尿道PRV V 8.4 Gy ${V}_{8.4{\mathrm{\ Gy}}}$等参数中观察到中等差异(计划[cc]与自动累积[cc]),在(4.33±1.90 vs。4.34±1.90)$({4.33 \pm 1.90\ {\ mathm {vs}}。\ 4.34 \pm 1.90})$,直肠V 24 Gy ${V}_{24\ {\ mathm {Gy}}}$ at(1.17±1.53 vs。1.74±1.91)$({1.17 \pm 1.53\ {\ mathm {vs}})\ 1.74 \pm 1.91})$和直肠V 28.2 Gy ${V}_{28.2{\ mathm {\ Gy}}}$ at(0.38±0.55 vs。0.59±0.71)$({0.38 \pm 0.55\ {\ mathm {vs}})\ 0.59 \pm 0.71})$。手工和自动累积剂量之间的比较显示变化可以忽略不计,几何指数和t检验p值大于0.7的强一致性也表明了这一点。结论:与MIM软件公司合作开发的自动化工作流程与人工积累相比具有更高的准确性。计划剂量和累积剂量之间观察到的适度差异强调适应性计划需要精确的剂量累积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated daily dose accumulation workflow for treatment quality assurance during online adaptive radiotherapy with a 0.35T MR-linac.

Purpose: This study assesses a novel, automated dose accumulation process during MR-guided online adaptive radiotherapy (MRgART) for prostate cancer, focusing on inter-fractional anatomical changes and discrepancies between delivered and planned doses.

Methods: A retrospective analysis was conducted on seven prostate cancer patients treated with a five-fraction stereotactic body radiation therapy (SBRT), using a 0.35T MRIdian MR-LINAC system. Daily plans were adapted when dose thresholds were exceeded. Planning MRI (pMRI) and daily MRIs (dMRIs) were imported into MIM software for automated and manual dose accumulation procedures. Rigid and deformable image registrations were followed by dose accumulation to compare delivered and planned doses. Manual and automated image registrations were compared by calculating the Hausdorff distance (HD), Jaccard, and DICE metrics.

Results: Moderate discrepancies in dosimetric parameters for the planning target volume (PTV) were observed between auto-accumulated and planned doses, such as D 95 % ${D}_{95\% }$ and D 0.03 cc ${D}_{0.03{\mathrm{\ cc}}}$ , with average differences of - 0.60 ± 0.61 $ - 0.60 \pm 0.61$  Gy and - 1.31 ± 0.42 $ - 1.31 \pm 0.42$  Gy, respectively. Volume differences of V 34.4 Gy ${V}_{34.4\ {\mathrm{Gy}}}$ and V 36.25 Gy ${V}_{36.25{\mathrm{\ Gy}}}$ indicated that auto-accumulated doses consistently had lower numbers compared to planned doses, with mean discrepancies of - 1.80 % ± 1.05 % $ - 1.80\% \pm 1.05\% $ and - 2.82 % ± 1.72 % $ - 2.82\% \pm 1.72\% $ , respectively. Organs at risk (OAR) dosimetric parameters exhibited higher dose volumes in auto-accumulated doses, with moderate differences (planned [cc] vs. auto-accumulated [cc]) observed in parameters such as urethra PRV V 8.4 Gy ${V}_{8.4{\mathrm{\ Gy}}}$ at ( 4.33 ± 1.90 vs . 4.34 ± 1.90 ) $( {4.33 \pm 1.90\ {\mathrm{vs}}.\ 4.34 \pm 1.90} )$ , rectum V 24 Gy ${V}_{24\ {\mathrm{Gy}}}$ at ( 1.17 ± 1.53 vs . 1.74 ± 1.91 ) $( {1.17 \pm 1.53\ {\mathrm{vs}}.\ 1.74 \pm 1.91} )$ and rectum V 28.2 Gy ${V}_{28.2{\mathrm{\ Gy}}}$ at ( 0.38 ± 0.55 vs . 0.59 ± 0.71 ) $( {0.38 \pm 0.55\ {\mathrm{vs}}.\ 0.59 \pm 0.71} )$ . The comparison between manually and auto-accumulated doses revealed negligible variations, as also indicated by strong concordance in geometric indices and t-test p-values above 0.7.

Conclusion: The automated workflow, developed in collaboration with MIM Software Inc., demonstrates high accuracy compared to manual accumulation. The moderate differences observed between planned and accumulated doses emphasize the need for accurate dose accumulation for adaptive plans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
期刊最新文献
Impact of acceleration treatment on treatment plan and delivery qualities in tomotherapy for lung cancer. T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study. Dose rate correction of a diode array for universal wedge field dosimetric verification. Evaluating the use of diagnostic CT with flattening filter free beams for palliative radiotherapy: Dosimetric impact of scanner calibration variability. Evaluation of the effect of metal stents on dose perturbation in the carbon beam irradiation field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1