微量Sc对RE−mg基合金储氢性能的影响

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-12-23 DOI:10.1016/j.jma.2024.11.034
Hanfeng Sun, Peng Sheng, Jun Li, Shihai Guo, Qilu Ge, Yanghuan Zhang
{"title":"微量Sc对RE−mg基合金储氢性能的影响","authors":"Hanfeng Sun, Peng Sheng, Jun Li, Shihai Guo, Qilu Ge, Yanghuan Zhang","doi":"10.1016/j.jma.2024.11.034","DOIUrl":null,"url":null,"abstract":"To address the challenges posed by high reaction temperatures and the slow kinetics of Mg-based alloys with high hydrogen storage density, Mg−RE−TM (RE = rare earth, TM = metallic element) alloys have been extensively researched and hold great promise. In this study, a series of Mg−RE−TM based Mg<sub>90</sub>Y<sub>2</sub>Ce<sub>2</sub>Ni<sub>3</sub>Al<sub>3-</sub><em><sub>x</sub></em>Sc<em><sub>x</sub></em> (<em>x</em> = 0, 0.3, 0.6, 0.9, 1.2) alloys were prepared. The addition of Sc element has been found to enhance the activation and kinetic properties of the alloy. Compared with the significant differences in the first four dehydrogenation curves of the Sc0 sample, the first activated dehydrogenation curve of the Sc1.2 alloy overlaps with the fully activated dehydrogenation curve. The dehydrogenation activation energy decreased from 96.56 kJ/mol in the Sc0 alloy to 63.69 kJ/mol in the Sc0.9 alloy. Through analysis of the microstructure, phase composition, and hydrogen absorption and desorption kinetics of the alloy, the mechanisms for improving the hydrogen storage properties of the alloy were elucidated. The nucleation-growth-impingement Avrami model was employed to accurately simulate the hydrogen storage kinetics. The results showed that stage II was prolonged and accelerated at high temperature, and the growth rate and hydrogen storage of stage I were increased at low temperature in hydrogen absorption. Microstructure analysis revealed the presence of Mg, CeMg<sub>12</sub>, Mg<sub>47</sub>Y, and YNi<sub>2</sub>Al<sub>3</sub> phases in the Sc0 sample. Upon the addition of Sc element, a new phase, ScNiAl, was formed, and the coarse grain size of the main phase was significantly refined. This refinement provides faster diffusion channels for hydrogen atoms, accelerating the phase transition between Mg alloys and hydrides. The microstructure changes explain the improved activation properties, effective hydrogen absorption and desorption capacity, and kinetic properties of the Mg-based samples.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"85 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifying hydrogen storage properties of the RE−Mg-based alloys with minor Sc addition\",\"authors\":\"Hanfeng Sun, Peng Sheng, Jun Li, Shihai Guo, Qilu Ge, Yanghuan Zhang\",\"doi\":\"10.1016/j.jma.2024.11.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenges posed by high reaction temperatures and the slow kinetics of Mg-based alloys with high hydrogen storage density, Mg−RE−TM (RE = rare earth, TM = metallic element) alloys have been extensively researched and hold great promise. In this study, a series of Mg−RE−TM based Mg<sub>90</sub>Y<sub>2</sub>Ce<sub>2</sub>Ni<sub>3</sub>Al<sub>3-</sub><em><sub>x</sub></em>Sc<em><sub>x</sub></em> (<em>x</em> = 0, 0.3, 0.6, 0.9, 1.2) alloys were prepared. The addition of Sc element has been found to enhance the activation and kinetic properties of the alloy. Compared with the significant differences in the first four dehydrogenation curves of the Sc0 sample, the first activated dehydrogenation curve of the Sc1.2 alloy overlaps with the fully activated dehydrogenation curve. The dehydrogenation activation energy decreased from 96.56 kJ/mol in the Sc0 alloy to 63.69 kJ/mol in the Sc0.9 alloy. Through analysis of the microstructure, phase composition, and hydrogen absorption and desorption kinetics of the alloy, the mechanisms for improving the hydrogen storage properties of the alloy were elucidated. The nucleation-growth-impingement Avrami model was employed to accurately simulate the hydrogen storage kinetics. The results showed that stage II was prolonged and accelerated at high temperature, and the growth rate and hydrogen storage of stage I were increased at low temperature in hydrogen absorption. Microstructure analysis revealed the presence of Mg, CeMg<sub>12</sub>, Mg<sub>47</sub>Y, and YNi<sub>2</sub>Al<sub>3</sub> phases in the Sc0 sample. Upon the addition of Sc element, a new phase, ScNiAl, was formed, and the coarse grain size of the main phase was significantly refined. This refinement provides faster diffusion channels for hydrogen atoms, accelerating the phase transition between Mg alloys and hydrides. The microstructure changes explain the improved activation properties, effective hydrogen absorption and desorption capacity, and kinetic properties of the Mg-based samples.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.11.034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了解决高储氢密度镁基合金的高反应温度和慢动力学所带来的挑战,Mg- RE - TM (RE =稀土,TM =金属元素)合金得到了广泛的研究,并具有很大的前景。本研究制备了一系列Mg−RE−TM基Mg90Y2Ce2Ni3Al3-xScx (x = 0,0.3, 0.6, 0.9, 1.2)合金。Sc元素的加入提高了合金的活化性能和动力学性能。对比Sc0试样前4次脱氢曲线的显著差异,Sc1.2合金的第一次活化脱氢曲线与完全活化脱氢曲线重叠。脱氢活化能从Sc0合金的96.56 kJ/mol降低到Sc0.9合金的63.69 kJ/mol。通过对合金的显微组织、相组成和吸氢解吸动力学的分析,阐明了提高合金储氢性能的机理。采用成核-生长冲击Avrami模型精确模拟储氢动力学。结果表明:在高温条件下,II期延长和加速,在低温条件下,I期的生长速度和储氢量增加。显微组织分析表明,Sc0样品中存在Mg、CeMg12、Mg47Y和YNi2Al3相。Sc元素加入后,形成了一个新的相ScNiAl,主相的粗晶粒尺寸明显细化。这种细化为氢原子提供了更快的扩散通道,加速了镁合金和氢化物之间的相变。微观结构的变化解释了镁基样品活化性能、有效吸氢和解吸能力以及动力学性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modifying hydrogen storage properties of the RE−Mg-based alloys with minor Sc addition
To address the challenges posed by high reaction temperatures and the slow kinetics of Mg-based alloys with high hydrogen storage density, Mg−RE−TM (RE = rare earth, TM = metallic element) alloys have been extensively researched and hold great promise. In this study, a series of Mg−RE−TM based Mg90Y2Ce2Ni3Al3-xScx (x = 0, 0.3, 0.6, 0.9, 1.2) alloys were prepared. The addition of Sc element has been found to enhance the activation and kinetic properties of the alloy. Compared with the significant differences in the first four dehydrogenation curves of the Sc0 sample, the first activated dehydrogenation curve of the Sc1.2 alloy overlaps with the fully activated dehydrogenation curve. The dehydrogenation activation energy decreased from 96.56 kJ/mol in the Sc0 alloy to 63.69 kJ/mol in the Sc0.9 alloy. Through analysis of the microstructure, phase composition, and hydrogen absorption and desorption kinetics of the alloy, the mechanisms for improving the hydrogen storage properties of the alloy were elucidated. The nucleation-growth-impingement Avrami model was employed to accurately simulate the hydrogen storage kinetics. The results showed that stage II was prolonged and accelerated at high temperature, and the growth rate and hydrogen storage of stage I were increased at low temperature in hydrogen absorption. Microstructure analysis revealed the presence of Mg, CeMg12, Mg47Y, and YNi2Al3 phases in the Sc0 sample. Upon the addition of Sc element, a new phase, ScNiAl, was formed, and the coarse grain size of the main phase was significantly refined. This refinement provides faster diffusion channels for hydrogen atoms, accelerating the phase transition between Mg alloys and hydrides. The microstructure changes explain the improved activation properties, effective hydrogen absorption and desorption capacity, and kinetic properties of the Mg-based samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1