{"title":"TaDL与TaB3和TaNF-YB1相互作用,协同调节面包小麦淀粉合成和籽粒品质。","authors":"Guoyu Liu, Runqi Zhang, Ziyan Wu, Jiazheng Yu, Hongyao Lou, Jun Zhu, Jie Liu, Jinying Gou, Zhongfu Ni, Qixin Sun, Rongqi Liang","doi":"10.1111/jipb.13815","DOIUrl":null,"url":null,"abstract":"<p>Starch biosynthesis is a critical factor in wheat (<i>Triticum aestivum</i> L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited <i>tadl</i> mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including <i>TaSUS1</i>, <i>TaSUS2</i>, <i>TaAGPL2</i>, <i>TaSBEIIa</i>, <i>TaGBSSII</i>, and <i>TaSWEET2a</i>, were markedly lower at 15 d after flowering (DAF) in <i>tadl</i> mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of <i>TaSUS2</i> and <i>TaAGPL2</i> through direct binding to their promoter regions. A null mutant of <i>TaB3</i> also affected grain filling, with phenotypes similar to those of <i>tadl</i> mutants, whereas overexpression of <i>TaNF-YB1</i> promoted grain filling. Our study demonstrated that <i>TaDL</i> plays an essential role in starch biosynthesis and identified an elite allele (<i>TaDL-BI</i>) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 2","pages":"355-374"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13815","citationCount":"0","resultStr":"{\"title\":\"TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat\",\"authors\":\"Guoyu Liu, Runqi Zhang, Ziyan Wu, Jiazheng Yu, Hongyao Lou, Jun Zhu, Jie Liu, Jinying Gou, Zhongfu Ni, Qixin Sun, Rongqi Liang\",\"doi\":\"10.1111/jipb.13815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starch biosynthesis is a critical factor in wheat (<i>Triticum aestivum</i> L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited <i>tadl</i> mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including <i>TaSUS1</i>, <i>TaSUS2</i>, <i>TaAGPL2</i>, <i>TaSBEIIa</i>, <i>TaGBSSII</i>, and <i>TaSWEET2a</i>, were markedly lower at 15 d after flowering (DAF) in <i>tadl</i> mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of <i>TaSUS2</i> and <i>TaAGPL2</i> through direct binding to their promoter regions. A null mutant of <i>TaB3</i> also affected grain filling, with phenotypes similar to those of <i>tadl</i> mutants, whereas overexpression of <i>TaNF-YB1</i> promoted grain filling. Our study demonstrated that <i>TaDL</i> plays an essential role in starch biosynthesis and identified an elite allele (<i>TaDL-BI</i>) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\"67 2\",\"pages\":\"355-374\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13815\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13815\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13815","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat
Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited tadl mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including TaSUS1, TaSUS2, TaAGPL2, TaSBEIIa, TaGBSSII, and TaSWEET2a, were markedly lower at 15 d after flowering (DAF) in tadl mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of TaSUS2 and TaAGPL2 through direct binding to their promoter regions. A null mutant of TaB3 also affected grain filling, with phenotypes similar to those of tadl mutants, whereas overexpression of TaNF-YB1 promoted grain filling. Our study demonstrated that TaDL plays an essential role in starch biosynthesis and identified an elite allele (TaDL-BI) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.