高温GeSn和GeC/GeCSn激光器的约束和阈值建模

IF 4.3 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-12-04 DOI:10.1109/JSTQE.2024.3511716
Md. Shamim Reza;Tuhin Dey;Augustus W. Arbogast;Qian Meng;Seth R. Bank;Mark A. Wistey
{"title":"高温GeSn和GeC/GeCSn激光器的约束和阈值建模","authors":"Md. Shamim Reza;Tuhin Dey;Augustus W. Arbogast;Qian Meng;Seth R. Bank;Mark A. Wistey","doi":"10.1109/JSTQE.2024.3511716","DOIUrl":null,"url":null,"abstract":"Models of GeSn and GeCSn quantum well (QW) lasers were compared to predict net gain and threshold for computing applications. GeSn showed weak confinement of electrons in both k-space (directness) and real space, as well as a weak optical confinement factor. Using material parameters from ab-initio calculations, adding 1-2% carbon to Ge or GeSn could provide all three confinements simultaneously, with up to 350 meV of electron confinement by Ge QW barriers and a direct bandgap that is 50-220 meV below the indirect gap. A 2-4x increase in electron effective mass preserves strong confinement even in narrow, 5 nm GeCSn/Ge quantum wells. Simply keeping electrons out of non-lasing, higher energy states doubles the differential gain compared with GeSn lasers and reduces free carrier absorption, while deeper QWs further enhance gain. GeCSn laser thresholds as low as 160 A/cm\n<sup>2</sup>\n are predicted for operation at temperatures of 100 °C, two orders of magnitude lower than comparable GeSn lasers.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-11"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confinement and Threshold Modeling for High Temperature GeSn and GeC/GeCSn Lasers\",\"authors\":\"Md. Shamim Reza;Tuhin Dey;Augustus W. Arbogast;Qian Meng;Seth R. Bank;Mark A. Wistey\",\"doi\":\"10.1109/JSTQE.2024.3511716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models of GeSn and GeCSn quantum well (QW) lasers were compared to predict net gain and threshold for computing applications. GeSn showed weak confinement of electrons in both k-space (directness) and real space, as well as a weak optical confinement factor. Using material parameters from ab-initio calculations, adding 1-2% carbon to Ge or GeSn could provide all three confinements simultaneously, with up to 350 meV of electron confinement by Ge QW barriers and a direct bandgap that is 50-220 meV below the indirect gap. A 2-4x increase in electron effective mass preserves strong confinement even in narrow, 5 nm GeCSn/Ge quantum wells. Simply keeping electrons out of non-lasing, higher energy states doubles the differential gain compared with GeSn lasers and reduces free carrier absorption, while deeper QWs further enhance gain. GeCSn laser thresholds as low as 160 A/cm\\n<sup>2</sup>\\n are predicted for operation at temperatures of 100 °C, two orders of magnitude lower than comparable GeSn lasers.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"31 1: SiGeSn Infrared Photon. and Quantum Electronics\",\"pages\":\"1-11\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10778196/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778196/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

比较了GeSn和GeCSn量子阱(QW)激光器的模型,以预测计算应用的净增益和阈值。GeSn在k空间(直接空间)和实空间均表现出较弱的电子约束,以及较弱的光学约束因子。利用ab-initio计算的材料参数,在Ge或GeSn中添加1-2%的碳可以同时提供所有三种约束,Ge QW势垒的电子约束高达350 meV,直接带隙比间接带隙低50-220 meV。电子有效质量增加2-4倍,即使在狭窄的5nm GeCSn/Ge量子阱中也能保持强约束。简单地将电子排除在非激光之外,与GeSn激光器相比,高能态的差分增益增加了一倍,并减少了自由载流子的吸收,而更深的qw进一步提高了增益。在100°C的工作温度下,GeCSn激光器的阈值预计低至160 A/cm2,比同类GeCSn激光器低两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Confinement and Threshold Modeling for High Temperature GeSn and GeC/GeCSn Lasers
Models of GeSn and GeCSn quantum well (QW) lasers were compared to predict net gain and threshold for computing applications. GeSn showed weak confinement of electrons in both k-space (directness) and real space, as well as a weak optical confinement factor. Using material parameters from ab-initio calculations, adding 1-2% carbon to Ge or GeSn could provide all three confinements simultaneously, with up to 350 meV of electron confinement by Ge QW barriers and a direct bandgap that is 50-220 meV below the indirect gap. A 2-4x increase in electron effective mass preserves strong confinement even in narrow, 5 nm GeCSn/Ge quantum wells. Simply keeping electrons out of non-lasing, higher energy states doubles the differential gain compared with GeSn lasers and reduces free carrier absorption, while deeper QWs further enhance gain. GeCSn laser thresholds as low as 160 A/cm 2 are predicted for operation at temperatures of 100 °C, two orders of magnitude lower than comparable GeSn lasers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
10.60
自引率
2.00%
发文量
212
审稿时长
3 months
期刊介绍: Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.
期刊最新文献
2024 Index IEEE Journal of Selected Topics in Quantum Electronics Vol. 30 Micrometer-Scale Silicon Modulator for O-Band Coherent Interconnects Beyond 100 GBaud Blochnium-Based Josephson Junction Parametric Amplifiers: Superior Tunability and Linearity Compact and Fully Functional High-Frequency Sine Wave Gating InGaAs/InP Single-Photon Detector Module Direct Bandgap Ge0.846Sn0.154 Photodiodes for Gas Sensing in the Mid-Wave Infrared
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1