基于临床参数的加速衰老、遗传易感性与慢性肾脏病风险及相关预期寿命的关联:前瞻性队列研究。

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-12-24 DOI:10.1111/acel.14453
Gang Zheng, Qing Chang, Yixiao Zhang, Yashu Liu, Chao Ji, Honghao Yang, Liangkai Chen, Yang Xia, Yuhong Zhao
{"title":"基于临床参数的加速衰老、遗传易感性与慢性肾脏病风险及相关预期寿命的关联:前瞻性队列研究。","authors":"Gang Zheng, Qing Chang, Yixiao Zhang, Yashu Liu, Chao Ji, Honghao Yang, Liangkai Chen, Yang Xia, Yuhong Zhao","doi":"10.1111/acel.14453","DOIUrl":null,"url":null,"abstract":"<p><p>Little evidence exists regarding the associations between clinical parameter-based biological aging and the incidence and outcome of chronic kidney disease (CKD). Thus, we aimed to assess the associations between biological aging, genetic risk, and the risk of CKD, as well as investigate the impact of accelerated biological aging on life expectancy. 281,363 participants free of kidney diseases from the UK Biobank were included in this prospective study. Biological age was measured from clinical traits using the KDM-BA and PhenoAge algorithms, and the discrepancies from chronological age were defined as biological age accelerations. A polygenic score was calculated to indicate the genetic predisposition of the estimated glomerular filtration rate (eGFR). A cause-specific competing risk model was used to estimate hazard ratios (HRs) and the corresponding confidence intervals (CIs) of incident CKD. We found that individuals with more pronounced accelerations in biological age exhibited an elevated risk of developing CKD (HR<sub>Quartile 4 vs. Quartile 1</sub>, 1.90; 95% CI, 1.77-2.05 for KDM-BA acceleration and HR<sub>Quartile 4 vs. Quartile 1</sub>, 2.79; 95% CI, 2.58-3.01 for PhenoAge acceleration), with nonlinear relationships. Notably, there were positive additive interactions between biological aging and genetic risk on CKD risk. Among the CKD population, accelerated biological aging was associated with a further decline in life expectancy. Advanced biological aging may potentially increase the vulnerability to developing CKD in individuals aged midlife and beyond, particularly among those with high genetic risk for abnormal kidney function, and could reduce the life expectancy of CKD patients.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14453"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations of clinical parameter-based accelerated aging, genetic predisposition with risk of chronic kidney disease and associated life expectancy: A prospective cohort study.\",\"authors\":\"Gang Zheng, Qing Chang, Yixiao Zhang, Yashu Liu, Chao Ji, Honghao Yang, Liangkai Chen, Yang Xia, Yuhong Zhao\",\"doi\":\"10.1111/acel.14453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Little evidence exists regarding the associations between clinical parameter-based biological aging and the incidence and outcome of chronic kidney disease (CKD). Thus, we aimed to assess the associations between biological aging, genetic risk, and the risk of CKD, as well as investigate the impact of accelerated biological aging on life expectancy. 281,363 participants free of kidney diseases from the UK Biobank were included in this prospective study. Biological age was measured from clinical traits using the KDM-BA and PhenoAge algorithms, and the discrepancies from chronological age were defined as biological age accelerations. A polygenic score was calculated to indicate the genetic predisposition of the estimated glomerular filtration rate (eGFR). A cause-specific competing risk model was used to estimate hazard ratios (HRs) and the corresponding confidence intervals (CIs) of incident CKD. We found that individuals with more pronounced accelerations in biological age exhibited an elevated risk of developing CKD (HR<sub>Quartile 4 vs. Quartile 1</sub>, 1.90; 95% CI, 1.77-2.05 for KDM-BA acceleration and HR<sub>Quartile 4 vs. Quartile 1</sub>, 2.79; 95% CI, 2.58-3.01 for PhenoAge acceleration), with nonlinear relationships. Notably, there were positive additive interactions between biological aging and genetic risk on CKD risk. Among the CKD population, accelerated biological aging was associated with a further decline in life expectancy. Advanced biological aging may potentially increase the vulnerability to developing CKD in individuals aged midlife and beyond, particularly among those with high genetic risk for abnormal kidney function, and could reduce the life expectancy of CKD patients.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14453\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14453\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14453","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

关于基于临床参数的生物衰老与慢性肾脏疾病(CKD)的发病率和转归之间的关联,几乎没有证据。因此,我们旨在评估生物衰老、遗传风险和CKD风险之间的关系,并研究加速生物衰老对预期寿命的影响。这项前瞻性研究纳入了来自英国生物银行的281363名无肾脏疾病的参与者。使用KDM-BA和PhenoAge算法从临床特征测量生物年龄,与实足年龄的差异被定义为生物年龄加速。计算多基因评分,以表明估计肾小球滤过率(eGFR)的遗传易感性。一个病因特异性竞争风险模型被用来估计CKD事件的风险比(hr)和相应的置信区间(ci)。我们发现,生物年龄加速更明显的个体患CKD的风险更高(hr四分位数4 vs四分位数1,1.90;四分位KDM-BA加速和hr4的95% CI为1.77-2.05,四分位1为2.79;95% CI为2.58-3.01(表型加速),具有非线性关系。值得注意的是,生物衰老和遗传风险对CKD风险存在正的加性相互作用。在CKD人群中,加速的生物衰老与预期寿命的进一步下降有关。生物老化的加剧可能会增加中年及以上人群发生CKD的易感性,特别是那些具有肾脏功能异常高遗传风险的人群,并可能降低CKD患者的预期寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Associations of clinical parameter-based accelerated aging, genetic predisposition with risk of chronic kidney disease and associated life expectancy: A prospective cohort study.

Little evidence exists regarding the associations between clinical parameter-based biological aging and the incidence and outcome of chronic kidney disease (CKD). Thus, we aimed to assess the associations between biological aging, genetic risk, and the risk of CKD, as well as investigate the impact of accelerated biological aging on life expectancy. 281,363 participants free of kidney diseases from the UK Biobank were included in this prospective study. Biological age was measured from clinical traits using the KDM-BA and PhenoAge algorithms, and the discrepancies from chronological age were defined as biological age accelerations. A polygenic score was calculated to indicate the genetic predisposition of the estimated glomerular filtration rate (eGFR). A cause-specific competing risk model was used to estimate hazard ratios (HRs) and the corresponding confidence intervals (CIs) of incident CKD. We found that individuals with more pronounced accelerations in biological age exhibited an elevated risk of developing CKD (HRQuartile 4 vs. Quartile 1, 1.90; 95% CI, 1.77-2.05 for KDM-BA acceleration and HRQuartile 4 vs. Quartile 1, 2.79; 95% CI, 2.58-3.01 for PhenoAge acceleration), with nonlinear relationships. Notably, there were positive additive interactions between biological aging and genetic risk on CKD risk. Among the CKD population, accelerated biological aging was associated with a further decline in life expectancy. Advanced biological aging may potentially increase the vulnerability to developing CKD in individuals aged midlife and beyond, particularly among those with high genetic risk for abnormal kidney function, and could reduce the life expectancy of CKD patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
A Single-Cell Transcriptome Atlas Characterizes the Immune Landscape of Human Testes During Aging. Downregulation of NAD Kinase Expression in β-Cells Contributes to the Aging-Associated Decline in Glucose-Stimulated Insulin Secretion. Effects of the VIVIFRAIL Exercise Protocol on Circulatory and Intracellular Peripheral Mediators Bridging Mitochondrial Dynamics and Inflammation in Robust and Frail Older People. Rejuvenation of Senescent Cells, In Vitro and In Vivo, by Low-Frequency Ultrasound. Diabetes Advances Cardiomyocyte Senescence Through Interfering Rnd3 Expression and Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1