氢氧化钾处理的膨润土生物炭复合材料去除水中铵

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-10-18 DOI:10.1007/s00396-024-05335-x
Thao Hoang-Minh, Nguyen Thi Hai, Do Trung Hieu, Ta Thi Hoai, Bui Van Dong, Luu Viet Dung, Nguyen Thi Hoang Ha
{"title":"氢氧化钾处理的膨润土生物炭复合材料去除水中铵","authors":"Thao Hoang-Minh,&nbsp;Nguyen Thi Hai,&nbsp;Do Trung Hieu,&nbsp;Ta Thi Hoai,&nbsp;Bui Van Dong,&nbsp;Luu Viet Dung,&nbsp;Nguyen Thi Hoang Ha","doi":"10.1007/s00396-024-05335-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH<sub>4</sub><sup>+</sup>) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N<sub>2</sub> adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH<sub>4</sub><sup>+</sup> ions. Co-existing cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) significantly reduced the removal efficiency of NH<sub>4</sub><sup>+</sup> ions. The Langmuir adsorption capacity of BRK for NH<sub>4</sub><sup>+</sup> followed the order: 22.51 mg/g (10 °C) &gt; 20.57 mg/g (30 °C) &gt; 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH<sub>4</sub><sup>+</sup> was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH<sub>4</sub><sup>+</sup> by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH<sub>4</sub><sup>+</sup> from water. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"81 - 94"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05335-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Removal of ammonium from water by a KOH-treated bentonite biochar composite\",\"authors\":\"Thao Hoang-Minh,&nbsp;Nguyen Thi Hai,&nbsp;Do Trung Hieu,&nbsp;Ta Thi Hoai,&nbsp;Bui Van Dong,&nbsp;Luu Viet Dung,&nbsp;Nguyen Thi Hoang Ha\",\"doi\":\"10.1007/s00396-024-05335-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH<sub>4</sub><sup>+</sup>) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N<sub>2</sub> adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH<sub>4</sub><sup>+</sup> ions. Co-existing cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) significantly reduced the removal efficiency of NH<sub>4</sub><sup>+</sup> ions. The Langmuir adsorption capacity of BRK for NH<sub>4</sub><sup>+</sup> followed the order: 22.51 mg/g (10 °C) &gt; 20.57 mg/g (30 °C) &gt; 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH<sub>4</sub><sup>+</sup> was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH<sub>4</sub><sup>+</sup> by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH<sub>4</sub><sup>+</sup> from water. </p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 1\",\"pages\":\"81 - 94\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00396-024-05335-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05335-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05335-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以天然膨润土和稻壳为原料,制备了一种新型吸附材料——koh处理的膨润土生物炭复合材料(BRK),用于去除水中铵离子。吸附剂的制备包括在400°C下热解,然后用KOH活化生物炭以产生BRK。采用傅里叶变换红外光谱(FTIR)、N2吸附分析、x射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散x射线(EDX)光谱等技术对所研究的吸附剂进行了表征。通过批量实验研究了pH、接触时间、温度、初始铵浓度和溶液中共存阳离子的存在等因素对吸附过程的影响。结果表明,溶液pH对BRK对NH4+离子的吸附能力影响较大。共存的阳离子(Na+、K+、Ca2+和Mg2+)显著降低了NH4+离子的去除效率。BRK对NH4+的Langmuir吸附量依次为:22.51 mg/g(10℃)> 20.57 mg/g(30℃)> 16.22 mg/g(50℃)。热力学研究中得到的负标准焓变(∆H°)表明,NH4+的吸附过程是放热的。动力学实验表明,接触30min后达到吸附平衡。离子交换是BRK去除NH4+的主要吸附机制。本研究证明BRK是从天然膨润土和稻壳中提取的一种低成本、可持续的吸附剂,有利于去除水中的NH4+。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of ammonium from water by a KOH-treated bentonite biochar composite

In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH4+) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N2 adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH4+ ions. Co-existing cations (Na+, K+, Ca2+, and Mg2+) significantly reduced the removal efficiency of NH4+ ions. The Langmuir adsorption capacity of BRK for NH4+ followed the order: 22.51 mg/g (10 °C) > 20.57 mg/g (30 °C) > 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH4+ was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH4+ by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH4+ from water.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Investigation of the polymer additive on the lyotropic lamellar phase formed by surfactants with different head groups Synthesis of dual-responsive carboxymethyl cellulose–based nanogels for drug delivery applications Research progress on eco-friendly rubber release agents Crab shell chitosan infusion: optimizing epoxy-polyamide composites membrane for improved mechanical and thermal properties Development and evaluation of folate-gelatin-poloxamer P407 copolymer nanogels for enhanced co-delivery of paclitaxel and curcumin in breast cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1