{"title":"DNMT3a缺乏与老年小鼠麻醉/手术诱导的突触功能障碍和认知障碍有关","authors":"Peilin Cong, Xinwei Huang, Qian Zhang, Mengfan He, Hanxi Wan, Qianqian Wu, Huanghui Wu, Yuxin Zhang, Chun Cheng, Li Tian, Lize Xiong","doi":"10.1111/acel.14458","DOIUrl":null,"url":null,"abstract":"<p><p>Perioperative neurocognitive disorder (PND) is a severe postoperative complication in older patients. Epigenetic changes are hallmarks of senescence and are closely associated with cognitive impairment. However, the effects of anesthesia and surgery on the aging brain's epigenetic regulatory mechanisms and its impact on cognitive impairment remain unclear. Using a laparotomy PND model, we report significant reduction in DNA methyltransferase 3a (DNMT3a) in hippocampal neurons of aged mice, which causes global DNA methylation decrease. Knockdown of DNMT3a leads to synaptic disorder and memory impairment in aged mice. Mechanistically, bisulfite sequencing revealed that DNMT3a deficiency reduces methylation in the LRG1 promoter region and promotes its transcription. We also show that activation of TGF-β signaling by the increase in LRG1 level, ultimately impacts the synaptic function. In contrast, both overexpressing DNMT3a or knockdown LRG1 in hippocampus can attenuate the synaptic disorders and rescue postoperative cognitive deficits in aged mice. Our results reveal that DNMT3a is a previously undefined mediator in the pathogenesis of PND, which couples epigenetic regulations with anesthesia/surgery-induced synaptic dysfunction and represents a therapeutic target to tackle PND.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14458"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNMT3a Deficiency Contributes to Anesthesia/Surgery-Induced Synaptic Dysfunction and Cognitive Impairment in Aged Mice.\",\"authors\":\"Peilin Cong, Xinwei Huang, Qian Zhang, Mengfan He, Hanxi Wan, Qianqian Wu, Huanghui Wu, Yuxin Zhang, Chun Cheng, Li Tian, Lize Xiong\",\"doi\":\"10.1111/acel.14458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perioperative neurocognitive disorder (PND) is a severe postoperative complication in older patients. Epigenetic changes are hallmarks of senescence and are closely associated with cognitive impairment. However, the effects of anesthesia and surgery on the aging brain's epigenetic regulatory mechanisms and its impact on cognitive impairment remain unclear. Using a laparotomy PND model, we report significant reduction in DNA methyltransferase 3a (DNMT3a) in hippocampal neurons of aged mice, which causes global DNA methylation decrease. Knockdown of DNMT3a leads to synaptic disorder and memory impairment in aged mice. Mechanistically, bisulfite sequencing revealed that DNMT3a deficiency reduces methylation in the LRG1 promoter region and promotes its transcription. We also show that activation of TGF-β signaling by the increase in LRG1 level, ultimately impacts the synaptic function. In contrast, both overexpressing DNMT3a or knockdown LRG1 in hippocampus can attenuate the synaptic disorders and rescue postoperative cognitive deficits in aged mice. Our results reveal that DNMT3a is a previously undefined mediator in the pathogenesis of PND, which couples epigenetic regulations with anesthesia/surgery-induced synaptic dysfunction and represents a therapeutic target to tackle PND.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14458\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14458\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14458","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
DNMT3a Deficiency Contributes to Anesthesia/Surgery-Induced Synaptic Dysfunction and Cognitive Impairment in Aged Mice.
Perioperative neurocognitive disorder (PND) is a severe postoperative complication in older patients. Epigenetic changes are hallmarks of senescence and are closely associated with cognitive impairment. However, the effects of anesthesia and surgery on the aging brain's epigenetic regulatory mechanisms and its impact on cognitive impairment remain unclear. Using a laparotomy PND model, we report significant reduction in DNA methyltransferase 3a (DNMT3a) in hippocampal neurons of aged mice, which causes global DNA methylation decrease. Knockdown of DNMT3a leads to synaptic disorder and memory impairment in aged mice. Mechanistically, bisulfite sequencing revealed that DNMT3a deficiency reduces methylation in the LRG1 promoter region and promotes its transcription. We also show that activation of TGF-β signaling by the increase in LRG1 level, ultimately impacts the synaptic function. In contrast, both overexpressing DNMT3a or knockdown LRG1 in hippocampus can attenuate the synaptic disorders and rescue postoperative cognitive deficits in aged mice. Our results reveal that DNMT3a is a previously undefined mediator in the pathogenesis of PND, which couples epigenetic regulations with anesthesia/surgery-induced synaptic dysfunction and represents a therapeutic target to tackle PND.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.