磁处理水对生物膜中细菌存活的影响。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2024-12-26 DOI:10.1080/08927014.2024.2444379
Aidan R Foster, Erika R Stark, Luisa A Ikner, Ian L Pepper
{"title":"磁处理水对生物膜中细菌存活的影响。","authors":"Aidan R Foster, Erika R Stark, Luisa A Ikner, Ian L Pepper","doi":"10.1080/08927014.2024.2444379","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study was to evaluate if a magnetic water treatment device could be used to mitigate biofilms in water systems. Magnetic treatment was applied to water upstream of a modified Robbins device in which <i>Pseudomonas fluorescence</i> biofilms were formed. Duration of magnetic treatment, system flow rate, and field strength were varied to assess the impacts on the biofilm. A control system was concurrently established in which no magnetic treatment was applied. After treatment, the number of viable cells in the biofilm was reduced by up to 2.46 log<sub>10</sub> CFU cm<sup>-2</sup> depending on the operational conditions. Increased cell stress, and ultimately death, was observed during treatment as indicated by an elevated AMPi stress index. These results indicate that magnetic water treatment may be an effective technology to decrease the extent of biofilms in water systems and a reduced need for chemical treatment. A mechanism is proposed in which metabolic processes are hindered due to the magnetic field effects on ions in the water. However, a mechanistic investigation remains outside the scope of this study. Future studies should aim to characterize both the impacts of treatment on the matrix and cellular processes to determine a mechanism for the observed effects.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-13"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of magnetically treated water on the survival of bacteria in biofilms.\",\"authors\":\"Aidan R Foster, Erika R Stark, Luisa A Ikner, Ian L Pepper\",\"doi\":\"10.1080/08927014.2024.2444379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The goal of this study was to evaluate if a magnetic water treatment device could be used to mitigate biofilms in water systems. Magnetic treatment was applied to water upstream of a modified Robbins device in which <i>Pseudomonas fluorescence</i> biofilms were formed. Duration of magnetic treatment, system flow rate, and field strength were varied to assess the impacts on the biofilm. A control system was concurrently established in which no magnetic treatment was applied. After treatment, the number of viable cells in the biofilm was reduced by up to 2.46 log<sub>10</sub> CFU cm<sup>-2</sup> depending on the operational conditions. Increased cell stress, and ultimately death, was observed during treatment as indicated by an elevated AMPi stress index. These results indicate that magnetic water treatment may be an effective technology to decrease the extent of biofilms in water systems and a reduced need for chemical treatment. A mechanism is proposed in which metabolic processes are hindered due to the magnetic field effects on ions in the water. However, a mechanistic investigation remains outside the scope of this study. Future studies should aim to characterize both the impacts of treatment on the matrix and cellular processes to determine a mechanism for the observed effects.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2444379\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2444379","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是评估磁性水处理装置是否可以用于减轻水系统中的生物膜。磁处理应用于改良罗宾斯装置上游的水,其中假单胞菌荧光生物膜形成。通过改变磁处理时间、系统流量和磁场强度来评估对生物膜的影响。同时建立了不进行磁处理的控制系统。处理后,根据操作条件的不同,生物膜中的活细胞数量最多减少2.46 log10 CFU cm-2。在治疗期间,观察到细胞应激增加,最终死亡,这是由升高的AMPi应激指数所指示的。这些结果表明,磁水处理可能是一种有效的技术,以减少水系统中的生物膜的程度和减少对化学处理的需求。提出了一种机制,其中代谢过程受阻,由于磁场对离子在水中的影响。然而,机械调查仍然超出了本研究的范围。未来的研究应该旨在描述治疗对基质和细胞过程的影响,以确定观察到的效应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of magnetically treated water on the survival of bacteria in biofilms.

The goal of this study was to evaluate if a magnetic water treatment device could be used to mitigate biofilms in water systems. Magnetic treatment was applied to water upstream of a modified Robbins device in which Pseudomonas fluorescence biofilms were formed. Duration of magnetic treatment, system flow rate, and field strength were varied to assess the impacts on the biofilm. A control system was concurrently established in which no magnetic treatment was applied. After treatment, the number of viable cells in the biofilm was reduced by up to 2.46 log10 CFU cm-2 depending on the operational conditions. Increased cell stress, and ultimately death, was observed during treatment as indicated by an elevated AMPi stress index. These results indicate that magnetic water treatment may be an effective technology to decrease the extent of biofilms in water systems and a reduced need for chemical treatment. A mechanism is proposed in which metabolic processes are hindered due to the magnetic field effects on ions in the water. However, a mechanistic investigation remains outside the scope of this study. Future studies should aim to characterize both the impacts of treatment on the matrix and cellular processes to determine a mechanism for the observed effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. Anti-biofilm effect of ferulic acid against Enterobacter hormaechei and Klebsiella pneumoniae: in vitro and in silico investigation. Anti-biofouling marine diterpenoids from Okinawan soft corals. Effects of epigallocatechin gallate on the development of matrix-rich Streptococcus mutans biofilm. Inhibition of Salmonella Typhimurium biofilm and polysaccharide production via eugenol-glucosyltransferase interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1