Chathura S Abeywickrama, Enya Huang, Wenhui Yan, Michael A Vrionides, Paaramitha Warushavithana, Kristen A Johnson, Robert V Stahelin, Yi Pang, Tomoyasu Mani, Kaveesha J Wijesinghe
{"title":"发光π-受体(π-A)芘-苯并噻唑染料的成像应用研究。","authors":"Chathura S Abeywickrama, Enya Huang, Wenhui Yan, Michael A Vrionides, Paaramitha Warushavithana, Kristen A Johnson, Robert V Stahelin, Yi Pang, Tomoyasu Mani, Kaveesha J Wijesinghe","doi":"10.3390/bios14120612","DOIUrl":null,"url":null,"abstract":"<p><p>Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene-benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene-benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy. The optical properties of BTP are studied in intracellular environments through advanced fluorescence microscopy techniques, with BTP exhibiting a noticeable shift toward blue (λ<sub>em</sub> ≈ 590 nm) emissions in cellular lysosomes. The averaged photon arrival time (AAT)-based studies exhibit two different emissive populations of photons, indicating the probe's dynamic equilibrium between two distinctively different lysosomal microenvironments. Here, BTP is successfully utilized for time-lapse fluorescence microscopy imaging in real-time as a 'wash-free' imaging dye with no observed background interference. BTP exhibits an excellent ability to highlight microorganisms (i.e., bacteria) such as <i>Bacillus megaterium</i> through fluorescence microscopy. BTP is found to be a promising candidate for two-photon fluorescence microscopy imaging. The two-photon excitability of BTP in COS-7 cells is studied, with the probe exhibiting an excitation maximum at λ<sub>TP</sub> ≈ 905 nm.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674487/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Imaging Applications of a Red-Emitting π-Acceptor (π-A) Pyrene-Benzothiazolium Dye.\",\"authors\":\"Chathura S Abeywickrama, Enya Huang, Wenhui Yan, Michael A Vrionides, Paaramitha Warushavithana, Kristen A Johnson, Robert V Stahelin, Yi Pang, Tomoyasu Mani, Kaveesha J Wijesinghe\",\"doi\":\"10.3390/bios14120612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene-benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene-benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy. The optical properties of BTP are studied in intracellular environments through advanced fluorescence microscopy techniques, with BTP exhibiting a noticeable shift toward blue (λ<sub>em</sub> ≈ 590 nm) emissions in cellular lysosomes. The averaged photon arrival time (AAT)-based studies exhibit two different emissive populations of photons, indicating the probe's dynamic equilibrium between two distinctively different lysosomal microenvironments. Here, BTP is successfully utilized for time-lapse fluorescence microscopy imaging in real-time as a 'wash-free' imaging dye with no observed background interference. BTP exhibits an excellent ability to highlight microorganisms (i.e., bacteria) such as <i>Bacillus megaterium</i> through fluorescence microscopy. BTP is found to be a promising candidate for two-photon fluorescence microscopy imaging. The two-photon excitability of BTP in COS-7 cells is studied, with the probe exhibiting an excitation maximum at λ<sub>TP</sub> ≈ 905 nm.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674487/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14120612\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14120612","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Exploring Imaging Applications of a Red-Emitting π-Acceptor (π-A) Pyrene-Benzothiazolium Dye.
Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene-benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene-benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy. The optical properties of BTP are studied in intracellular environments through advanced fluorescence microscopy techniques, with BTP exhibiting a noticeable shift toward blue (λem ≈ 590 nm) emissions in cellular lysosomes. The averaged photon arrival time (AAT)-based studies exhibit two different emissive populations of photons, indicating the probe's dynamic equilibrium between two distinctively different lysosomal microenvironments. Here, BTP is successfully utilized for time-lapse fluorescence microscopy imaging in real-time as a 'wash-free' imaging dye with no observed background interference. BTP exhibits an excellent ability to highlight microorganisms (i.e., bacteria) such as Bacillus megaterium through fluorescence microscopy. BTP is found to be a promising candidate for two-photon fluorescence microscopy imaging. The two-photon excitability of BTP in COS-7 cells is studied, with the probe exhibiting an excitation maximum at λTP ≈ 905 nm.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.