用于微束放射治疗的紧凑线聚焦x射线管。焦点点特性和准直器设计。

IF 3.3 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Physica Medica-European Journal of Medical Physics Pub Date : 2025-01-01 Epub Date: 2024-12-26 DOI:10.1016/j.ejmp.2024.104861
Christian Petrich, Johanna Winter, Anton Dimroth, Jan J Wilkens, Stefan Bartzsch
{"title":"用于微束放射治疗的紧凑线聚焦x射线管。焦点点特性和准直器设计。","authors":"Christian Petrich, Johanna Winter, Anton Dimroth, Jan J Wilkens, Stefan Bartzsch","doi":"10.1016/j.ejmp.2024.104861","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT). During commissioning, characterisation of the X-ray focal spot is necessary. For the generation of microbeams, we require a specially designed collimator adapted to the LFXT.</p><p><strong>Methods: </strong>We present an adapted edge method and a pinhole method for focal spot measurements of the LFXT prototype as well as the design of the microbeam collimator with a slit width of 50μm, spaced by 400μm. Monte Carlo simulations validated the focal spot measurement techniques and the design of the collimator.</p><p><strong>Results: </strong>We showed that the adapted edge method is more complex but superior to the adapted pinhole method in terms of quantitative validity. Simulations for the microbeam collimator showed a sharp microbeam dose profile with a peak-to-valley dose ratio (PVDR) above 23 throughout 50 mm of water.</p><p><strong>Conclusion: </strong>During commissioning, the adapted focal spot visualisation methods will be used to determine the focal spot dimensions and to optimise machine parameters. The LFXT prototype will enable preclinical MRT with significantly higher dose rates than any other compact MRT source and will pave the way for the first clinical trials in a hospital setting.</p>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"129 ","pages":"104861"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compact line-focus X-ray tube for microbeam radiation therapy - Focal spot characterisation and collimator design.\",\"authors\":\"Christian Petrich, Johanna Winter, Anton Dimroth, Jan J Wilkens, Stefan Bartzsch\",\"doi\":\"10.1016/j.ejmp.2024.104861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT). During commissioning, characterisation of the X-ray focal spot is necessary. For the generation of microbeams, we require a specially designed collimator adapted to the LFXT.</p><p><strong>Methods: </strong>We present an adapted edge method and a pinhole method for focal spot measurements of the LFXT prototype as well as the design of the microbeam collimator with a slit width of 50μm, spaced by 400μm. Monte Carlo simulations validated the focal spot measurement techniques and the design of the collimator.</p><p><strong>Results: </strong>We showed that the adapted edge method is more complex but superior to the adapted pinhole method in terms of quantitative validity. Simulations for the microbeam collimator showed a sharp microbeam dose profile with a peak-to-valley dose ratio (PVDR) above 23 throughout 50 mm of water.</p><p><strong>Conclusion: </strong>During commissioning, the adapted focal spot visualisation methods will be used to determine the focal spot dimensions and to optimise machine parameters. The LFXT prototype will enable preclinical MRT with significantly higher dose rates than any other compact MRT source and will pave the way for the first clinical trials in a hospital setting.</p>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"129 \",\"pages\":\"104861\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmp.2024.104861\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmp.2024.104861","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:在许多临床前研究中,与传统放射治疗相比,微束放射治疗(MRT)在相同的肿瘤控制概率下显示出更好的健康组织保护。临床前研究的局限性在于,由于对光束质量的要求很高,缺乏适合临床应用的放射源。为了克服这些限制,我们开发并制造了第一个线聚焦x射线管(LFXT)的原型。在调试期间,有必要对x射线焦点进行表征。为了产生微光束,我们需要一个专门设计的适合LFXT的准直器。方法:采用自适应边缘法和针孔法测量LFXT原型的焦点光斑,并设计了狭缝宽度为50μm、间距为400μm的微光束准直器。蒙特卡罗仿真验证了焦斑测量技术和准直器的设计。结果:适应边缘法比适应针孔法更复杂,但在定量效度上优于适应针孔法。对微束准直器的模拟显示,在50毫米的水中,微束的剂量曲线明显,峰谷剂量比(PVDR)大于23。结论:在调试过程中,将采用适应性焦斑可视化方法确定焦斑尺寸并优化机器参数。LFXT原型将使临床前MRT具有比任何其他紧凑型MRT源更高的剂量率,并将为医院环境中的首次临床试验铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The compact line-focus X-ray tube for microbeam radiation therapy - Focal spot characterisation and collimator design.

Purpose: Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT). During commissioning, characterisation of the X-ray focal spot is necessary. For the generation of microbeams, we require a specially designed collimator adapted to the LFXT.

Methods: We present an adapted edge method and a pinhole method for focal spot measurements of the LFXT prototype as well as the design of the microbeam collimator with a slit width of 50μm, spaced by 400μm. Monte Carlo simulations validated the focal spot measurement techniques and the design of the collimator.

Results: We showed that the adapted edge method is more complex but superior to the adapted pinhole method in terms of quantitative validity. Simulations for the microbeam collimator showed a sharp microbeam dose profile with a peak-to-valley dose ratio (PVDR) above 23 throughout 50 mm of water.

Conclusion: During commissioning, the adapted focal spot visualisation methods will be used to determine the focal spot dimensions and to optimise machine parameters. The LFXT prototype will enable preclinical MRT with significantly higher dose rates than any other compact MRT source and will pave the way for the first clinical trials in a hospital setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
14.70%
发文量
493
审稿时长
78 days
期刊介绍: Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics: Medical Imaging Radiation Therapy Radiation Protection Measuring Systems and Signal Processing Education and training in Medical Physics Professional issues in Medical Physics.
期刊最新文献
Breast ultrasound imaging systems performance evaluation using novel Contrast-Detail (C-D) and Anechoic-Target (A-T) phantoms. Intrafraction motion in intra-cranial multi-target stereotactic radiosurgery plans: A multi-institutional investigation on robustness. A straightforward method for assessing the technical image quality of reconstructed and synthetic 2D images for Digital breast tomosynthesis systems. Characterization and evaluation methods of fused deposition modeling and stereolithography additive manufacturing for clinical linear accelerator photon and electron radiotherapy applications. Comparison of AAPM TG282 and Dance breast dosimetry models: Impact on estimates of average MGD for the United Kingdom breast screening programmes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1