April Mordi, Varsha Karunakaran, Umme Marium Mim, Eric Marple, Narasimhan Rajaram
{"title":"体内应用的多模态漫反射和空间偏移拉曼光谱系统的设计和验证。","authors":"April Mordi, Varsha Karunakaran, Umme Marium Mim, Eric Marple, Narasimhan Rajaram","doi":"10.1002/jbio.202400333","DOIUrl":null,"url":null,"abstract":"<p><p>We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio. Measurements on chicken breast tissue demonstrate that both DRS and RS can acquire spectra from similar depths within tissue. Measurements acquired from the skin of a human volunteer demonstrate distinct Raman peaks at 937 and 1755 cm<sup>-1</sup> that were unique to the zero-offset ball lens configuration and 718 and 1089 cm<sup>-1</sup> for the spatially offset setting. We also identified Raman peaks corresponding to melanin that were prominent in the superficial measurements obtained with the ball lens-coupled fibers but not in the spatially offset fibers.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400333"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Validation of a Multimodal Diffuse Reflectance and Spatially Offset Raman Spectroscopy System for In Vivo Applications.\",\"authors\":\"April Mordi, Varsha Karunakaran, Umme Marium Mim, Eric Marple, Narasimhan Rajaram\",\"doi\":\"10.1002/jbio.202400333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio. Measurements on chicken breast tissue demonstrate that both DRS and RS can acquire spectra from similar depths within tissue. Measurements acquired from the skin of a human volunteer demonstrate distinct Raman peaks at 937 and 1755 cm<sup>-1</sup> that were unique to the zero-offset ball lens configuration and 718 and 1089 cm<sup>-1</sup> for the spatially offset setting. We also identified Raman peaks corresponding to melanin that were prominent in the superficial measurements obtained with the ball lens-coupled fibers but not in the spatially offset fibers.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Validation of a Multimodal Diffuse Reflectance and Spatially Offset Raman Spectroscopy System for In Vivo Applications.
We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio. Measurements on chicken breast tissue demonstrate that both DRS and RS can acquire spectra from similar depths within tissue. Measurements acquired from the skin of a human volunteer demonstrate distinct Raman peaks at 937 and 1755 cm-1 that were unique to the zero-offset ball lens configuration and 718 and 1089 cm-1 for the spatially offset setting. We also identified Raman peaks corresponding to melanin that were prominent in the superficial measurements obtained with the ball lens-coupled fibers but not in the spatially offset fibers.