变化的环境、非生物胁迫和管理措施对农田蒸散的影响

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Reviews of Geophysics Pub Date : 2024-12-30 DOI:10.1029/2024rg000858
Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang
{"title":"变化的环境、非生物胁迫和管理措施对农田蒸散的影响","authors":"Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang","doi":"10.1029/2024rg000858","DOIUrl":null,"url":null,"abstract":"The significance of crop evapotranspiration (ET<sub>a</sub>) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ET<sub>a</sub> is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO<sub>2</sub> concentration (e[CO<sub>2</sub>]), elevated ozone concentration (e[O<sub>3</sub>]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ET<sub>a</sub> were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O<sub>3</sub>], and drip irrigation adoption generally led to lower total growing–season ET<sub>a</sub>. However, total growing–season ET<sub>a</sub> responses to e[CO<sub>2</sub>], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO<sub>2</sub>], e[O<sub>3</sub>], water and salinity stresses on total growing–season ET<sub>a</sub> are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ET<sub>a</sub> in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ET<sub>a</sub> under varying planting densities are due to their differences in leaf area. The responses of ET<sub>a</sub> to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ET<sub>a</sub> models currently in use can estimate the response of ET<sub>a</sub> to the many aforementioned factors except for e[O<sub>3</sub>], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"15 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review\",\"authors\":\"Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang\",\"doi\":\"10.1029/2024rg000858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of crop evapotranspiration (ET<sub>a</sub>) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ET<sub>a</sub> is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO<sub>2</sub> concentration (e[CO<sub>2</sub>]), elevated ozone concentration (e[O<sub>3</sub>]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ET<sub>a</sub> were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O<sub>3</sub>], and drip irrigation adoption generally led to lower total growing–season ET<sub>a</sub>. However, total growing–season ET<sub>a</sub> responses to e[CO<sub>2</sub>], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO<sub>2</sub>], e[O<sub>3</sub>], water and salinity stresses on total growing–season ET<sub>a</sub> are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ET<sub>a</sub> in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ET<sub>a</sub> under varying planting densities are due to their differences in leaf area. The responses of ET<sub>a</sub> to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ET<sub>a</sub> models currently in use can estimate the response of ET<sub>a</sub> to the many aforementioned factors except for e[O<sub>3</sub>], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024rg000858\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024rg000858","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

作物蒸散量(ETa)对气候科学、农艺研究和水资源的重要性是无可争议的。持续引起关注的是ETa的可变性是如何由不断变化的环境、非生物压力和管理实践驱动的。本文综述了CO2浓度升高(e[CO2])、臭氧浓度升高(e[O3])、气候变暖、非生物胁迫(水、盐、热胁迫)和管理措施(种植密度、灌溉方式、覆盖、施氮)对农田ETa的影响,以及它们的可能原因和估计。水分和盐分胁迫,e[O3]和采用滴灌通常导致生长季总ETa降低。然而,在不同的实证研究中,总生长季ETa对e[CO2]、增温、热胁迫、覆盖、种植密度和补氮的响应并不一致。e[CO2]、e[O3]、水和盐胁迫对整个生长季ETa的影响主要来自于气孔导度、根系水分吸收、根和叶面积发育、小气候以及潜在的物候。总生长季ETa对变暖的响应受环境生长季平均气温和物候变化的影响。不同种植密度下作物ETa的差异是由于叶片面积的差异造成的。ETa对热胁迫、覆盖和施氮的响应反映了它们对蒸腾和蒸发的相反影响之间的权衡,以及可能的物候特征。目前使用的修正ETa模型可以估计除e[O3]、热应力和施氮外,ETa对上述许多因素的响应。这些因素为今后的研究提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review
The significance of crop evapotranspiration (ETa) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ETa is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO2 concentration (e[CO2]), elevated ozone concentration (e[O3]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ETa were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O3], and drip irrigation adoption generally led to lower total growing–season ETa. However, total growing–season ETa responses to e[CO2], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO2], e[O3], water and salinity stresses on total growing–season ETa are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ETa in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ETa under varying planting densities are due to their differences in leaf area. The responses of ETa to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ETa models currently in use can estimate the response of ETa to the many aforementioned factors except for e[O3], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
期刊最新文献
Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health The Influence of Topography on the Global Terrestrial Water Cycle The Impacts of Erosion on the Carbon Cycle The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1