Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost
{"title":"侵蚀对碳循环的影响","authors":"Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost","doi":"10.1029/2023rg000829","DOIUrl":null,"url":null,"abstract":"Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr<sup>−1</sup>, globally) and chemical erosion (0.26–0.48 Pg C yr<sup>−1</sup>). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr<sup>−1</sup> on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr<sup>−1</sup>) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"34 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impacts of Erosion on the Carbon Cycle\",\"authors\":\"Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost\",\"doi\":\"10.1029/2023rg000829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr<sup>−1</sup>, globally) and chemical erosion (0.26–0.48 Pg C yr<sup>−1</sup>). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr<sup>−1</sup> on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr<sup>−1</sup>) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023rg000829\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023rg000829","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
与水有关的物理和化学侵蚀都影响陆地-大气碳交换。然而,以前的研究往往单独处理这些过程或使用过于简化的机制,导致关于侵蚀引起的碳通量的持续争论和不确定性。我们概述了物理侵蚀(全球范围内0.05-0.29 Pg C yr - 1)和化学侵蚀(0.26-0.48 Pg C yr - 1)诱导的现场碳吸收通量。然后,我们讨论了场外碳动力学(在运输、沉积和掩埋过程中)。运输过程中全球土壤有机碳矿化约为0.37 ~ 1.20 Pg C yr−1。我们还总结了河口的总体碳通量(0.71-1.06 Pg C yr−1),并确定了河口内不同类型碳的来源,其中大部分与土地侵蚀有关。目前量化物理侵蚀引起的垂直碳通量的方法侧重于两个不同的时间尺度:短期动态(从几分钟到几十年),强调净垂直碳通量;长期动态(跨越千年到地质时间尺度),研究长期侵蚀碳的命运。除了直接的化学测量和建模方法外,利用河流物质指标进行估算是限制化学侵蚀驱动的碳通量的常用方法。最后,我们强调了量化相关通量的主要挑战。为了克服未来研究中潜在的偏差,我们强烈建议在一个明确的时间尺度上进行物理和化学侵蚀的综合研究。全面了解侵蚀引起的横向和垂直碳通量的驱动机制对于关闭全球碳预算至关重要。
Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr−1, globally) and chemical erosion (0.26–0.48 Pg C yr−1). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr−1 on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr−1) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.