{"title":"基于结构的 Samaderine E 和 Bismurrayaquinone A 植物化学物质作为 KRas 癌症蛋白潜在抑制剂的相互作用研究。","authors":"Z Hasan, M Y Areeshi, R K Mandal, S Haque","doi":"10.1080/1062936X.2024.2439315","DOIUrl":null,"url":null,"abstract":"<p><p>Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1095-1108"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.\",\"authors\":\"Z Hasan, M Y Areeshi, R K Mandal, S Haque\",\"doi\":\"10.1080/1062936X.2024.2439315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"1095-1108\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2439315\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2439315","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.
Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.