石墨烯取向角对AZ91镁基复合材料力学性能的增强/减弱效应

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-01-03 DOI:10.1016/j.jma.2024.12.001
Dunwei Peng, Zhuo Song, Yunpeng Zhang, Xiaopan Wang, Hua Hou, Yuhong Zhao
{"title":"石墨烯取向角对AZ91镁基复合材料力学性能的增强/减弱效应","authors":"Dunwei Peng, Zhuo Song, Yunpeng Zhang, Xiaopan Wang, Hua Hou, Yuhong Zhao","doi":"10.1016/j.jma.2024.12.001","DOIUrl":null,"url":null,"abstract":"Graphene, as the reinforcing phase of magnesium matrix composites, can effectively improve the material strength, elastic modulus, and other properties. However, the random distribution of graphene in the matrix (i.e., random orientation angle) leads to different reinforcement effects on the matrix. To gain a deeper understanding of the impact of monolayer graphene (1LG) with varying orientation angles on the properties of Mg-9Al-1Zn (AZ91 (wt.%)) magnesium alloy, molecular dynamics (MD) simulations are employed to analyze the mechanical properties of AZ91/1LG composites under uniaxial tension. The simulation results show that Young's modulus and tensile strength of AZ91/1LG composites decrease gradually with the increase of the orientation angle of the 1LG. The Young's modulus and tensile strength of AZ91/1LG composites can be improved by the 1LG orientation angle of 0°∼10° , where the two are enhanced by 21.7% and 19.7% respectively, at an orientation angle of 0°. However, the Young's modulus and tensile strength of 1LG are decreased for orientation angles of 20°∼90°. Atomic structure evolution analysis revealed that the deformation mechanism of AZ91/1LG nanocomposites mainly depended on the load transfer ability of 1LG with different orientation angles, the bonding ability with AZ91 magnesium alloy matrix and the change of dislocation density. By fitting the formula to the tensile strength of AZ91/1LG composites with different orientation angles of 1LG, it is found that the simulated data of the AZ91/1LG composites containing a 1LG has a maximum relative error of about 10% concerning the fitted empirical formula to calculate the data. The maximum relative error for AZ91/1LG composites containing multiplate 1LG with different orientation angles is 7%. In addition, the interaction between graphene and dislocations in AZ91 magnesium matrix was further explained by transmission electron microscopy (TEM) and phase-field-crystal (PFC) simulation. It can provide some technical guidance for the experimental process design of AZ91/1LG composites.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"6 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening/weakening effect of graphene orientation angle on mechanical properties of AZ91 magnesium matrix composites\",\"authors\":\"Dunwei Peng, Zhuo Song, Yunpeng Zhang, Xiaopan Wang, Hua Hou, Yuhong Zhao\",\"doi\":\"10.1016/j.jma.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene, as the reinforcing phase of magnesium matrix composites, can effectively improve the material strength, elastic modulus, and other properties. However, the random distribution of graphene in the matrix (i.e., random orientation angle) leads to different reinforcement effects on the matrix. To gain a deeper understanding of the impact of monolayer graphene (1LG) with varying orientation angles on the properties of Mg-9Al-1Zn (AZ91 (wt.%)) magnesium alloy, molecular dynamics (MD) simulations are employed to analyze the mechanical properties of AZ91/1LG composites under uniaxial tension. The simulation results show that Young's modulus and tensile strength of AZ91/1LG composites decrease gradually with the increase of the orientation angle of the 1LG. The Young's modulus and tensile strength of AZ91/1LG composites can be improved by the 1LG orientation angle of 0°∼10° , where the two are enhanced by 21.7% and 19.7% respectively, at an orientation angle of 0°. However, the Young's modulus and tensile strength of 1LG are decreased for orientation angles of 20°∼90°. Atomic structure evolution analysis revealed that the deformation mechanism of AZ91/1LG nanocomposites mainly depended on the load transfer ability of 1LG with different orientation angles, the bonding ability with AZ91 magnesium alloy matrix and the change of dislocation density. By fitting the formula to the tensile strength of AZ91/1LG composites with different orientation angles of 1LG, it is found that the simulated data of the AZ91/1LG composites containing a 1LG has a maximum relative error of about 10% concerning the fitted empirical formula to calculate the data. The maximum relative error for AZ91/1LG composites containing multiplate 1LG with different orientation angles is 7%. In addition, the interaction between graphene and dislocations in AZ91 magnesium matrix was further explained by transmission electron microscopy (TEM) and phase-field-crystal (PFC) simulation. It can provide some technical guidance for the experimental process design of AZ91/1LG composites.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.12.001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯作为镁基复合材料的增强相,可以有效提高材料的强度、弹性模量等性能。然而,石墨烯在基体中的随机分布(即取向角的随机)导致其对基体的增强效果不同。为了更深入地了解不同取向角度的单层石墨烯(1LG)对Mg-9Al-1Zn (AZ91 (wt.%))镁合金性能的影响,采用分子动力学(MD)模拟方法分析了AZ91/1LG复合材料在单轴拉伸下的力学性能。模拟结果表明,AZ91/1LG复合材料的杨氏模量和抗拉强度随着1LG取向角的增大而逐渐降低。当取向角为0°~ 10°时,AZ91/1LG复合材料的杨氏模量和抗拉强度分别提高了21.7%和19.7%。然而,当取向角为20°~ 90°时,1LG的杨氏模量和抗拉强度下降。原子结构演化分析表明,AZ91/1LG纳米复合材料的变形机制主要取决于1LG在不同取向角下的载荷传递能力、与AZ91镁合金基体的结合能力以及位错密度的变化。将该公式拟合到不同取向角为1LG的AZ91/1LG复合材料的抗拉强度,发现含有1LG的AZ91/1LG复合材料的模拟数据与拟合的经验公式计算数据的最大相对误差约为10%。含不同取向角多板1LG的AZ91/1LG复合材料的最大相对误差为7%。此外,通过透射电子显微镜(TEM)和相场晶体(PFC)模拟进一步解释了石墨烯与AZ91镁基体中位错之间的相互作用。可为AZ91/1LG复合材料的实验工艺设计提供一定的技术指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strengthening/weakening effect of graphene orientation angle on mechanical properties of AZ91 magnesium matrix composites
Graphene, as the reinforcing phase of magnesium matrix composites, can effectively improve the material strength, elastic modulus, and other properties. However, the random distribution of graphene in the matrix (i.e., random orientation angle) leads to different reinforcement effects on the matrix. To gain a deeper understanding of the impact of monolayer graphene (1LG) with varying orientation angles on the properties of Mg-9Al-1Zn (AZ91 (wt.%)) magnesium alloy, molecular dynamics (MD) simulations are employed to analyze the mechanical properties of AZ91/1LG composites under uniaxial tension. The simulation results show that Young's modulus and tensile strength of AZ91/1LG composites decrease gradually with the increase of the orientation angle of the 1LG. The Young's modulus and tensile strength of AZ91/1LG composites can be improved by the 1LG orientation angle of 0°∼10° , where the two are enhanced by 21.7% and 19.7% respectively, at an orientation angle of 0°. However, the Young's modulus and tensile strength of 1LG are decreased for orientation angles of 20°∼90°. Atomic structure evolution analysis revealed that the deformation mechanism of AZ91/1LG nanocomposites mainly depended on the load transfer ability of 1LG with different orientation angles, the bonding ability with AZ91 magnesium alloy matrix and the change of dislocation density. By fitting the formula to the tensile strength of AZ91/1LG composites with different orientation angles of 1LG, it is found that the simulated data of the AZ91/1LG composites containing a 1LG has a maximum relative error of about 10% concerning the fitted empirical formula to calculate the data. The maximum relative error for AZ91/1LG composites containing multiplate 1LG with different orientation angles is 7%. In addition, the interaction between graphene and dislocations in AZ91 magnesium matrix was further explained by transmission electron microscopy (TEM) and phase-field-crystal (PFC) simulation. It can provide some technical guidance for the experimental process design of AZ91/1LG composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1