{"title":"sub - 3nm叉片fet负电容效应分析","authors":"Yeasin Arafat Pritom;Hridita Biswas;Mainul Hossain","doi":"10.1109/TED.2024.3506503","DOIUrl":null,"url":null,"abstract":"Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to-\n<sc>off</small>\n-current (\n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n) ratio, lower threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n), higher transconductance (\n<inline-formula> <tex-math>${g}_{\\text {m}}$ </tex-math></inline-formula>\n), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in \n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n ratio, ~19.2% faster switching, and ~63% reduction in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of \n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"83-89"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Negative Capacitance Effect in Sub-3-nm Forksheet FETs\",\"authors\":\"Yeasin Arafat Pritom;Hridita Biswas;Mainul Hossain\",\"doi\":\"10.1109/TED.2024.3506503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to-\\n<sc>off</small>\\n-current (\\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n) ratio, lower threshold voltage (\\n<inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula>\\n), higher transconductance (\\n<inline-formula> <tex-math>${g}_{\\\\text {m}}$ </tex-math></inline-formula>\\n), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in \\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n ratio, ~19.2% faster switching, and ~63% reduction in \\n<inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula>\\n compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of \\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"83-89\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777941/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777941/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis of Negative Capacitance Effect in Sub-3-nm Forksheet FETs
Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to-
off
-current (
${I}_{\text {ON}}$
/
${I}_{\text {OFF}}$
) ratio, lower threshold voltage (
${V}_{\text {th}}$
), higher transconductance (
${g}_{\text {m}}$
), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in
${I}_{\text {ON}}$
/
${I}_{\text {OFF}}$
ratio, ~19.2% faster switching, and ~63% reduction in
${V}_{\text {th}}$
compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of
${I}_{\text {ON}}$
/
${I}_{\text {OFF}}$
ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.