sub - 3nm叉片fet负电容效应分析

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-12-04 DOI:10.1109/TED.2024.3506503
Yeasin Arafat Pritom;Hridita Biswas;Mainul Hossain
{"title":"sub - 3nm叉片fet负电容效应分析","authors":"Yeasin Arafat Pritom;Hridita Biswas;Mainul Hossain","doi":"10.1109/TED.2024.3506503","DOIUrl":null,"url":null,"abstract":"Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to-\n<sc>off</small>\n-current (\n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n) ratio, lower threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n), higher transconductance (\n<inline-formula> <tex-math>${g}_{\\text {m}}$ </tex-math></inline-formula>\n), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in \n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n ratio, ~19.2% faster switching, and ~63% reduction in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of \n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"83-89"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Negative Capacitance Effect in Sub-3-nm Forksheet FETs\",\"authors\":\"Yeasin Arafat Pritom;Hridita Biswas;Mainul Hossain\",\"doi\":\"10.1109/TED.2024.3506503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to-\\n<sc>off</small>\\n-current (\\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n) ratio, lower threshold voltage (\\n<inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula>\\n), higher transconductance (\\n<inline-formula> <tex-math>${g}_{\\\\text {m}}$ </tex-math></inline-formula>\\n), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in \\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n ratio, ~19.2% faster switching, and ~63% reduction in \\n<inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula>\\n compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of \\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"83-89\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777941/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777941/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

叉片(FSH)场效应晶体管(fet)具有继续扩展到3nm技术节点以外的潜力。本文全面分析了金属-铁电-金属-绝缘体-半导体(MFMIS)结构的无磁滞负电容(NC)-FSH场效应管的性能。在传统FSH FET的栅极堆栈中添加铁电(FE)层可以显著提高器件性能,实现更低的亚阈值摆幅(SS)、更高的通断电流(${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$)比、更低的阈值电压(${V}_{\text {th}}$)、更高的跨导(${g}_{\text {m}}$)和更快的开关。通过将1-D朗道-卡拉特尼科夫(L-K)方程的解与完全校准的3-D技术计算机辅助设计(TCAD)模拟相结合,获得了器件的特性。与基线FSH FET相比,所提出的NC-FSH FET的${I}_{\text {on}}$ / ${I}_{\text {OFF}}$比值平均提高了~3.46%,开关速度提高了~19.2%,${V}_{\text {th}}$降低了~63%。此外,NC-FSH FET的SS低至29.76 mV/ 10年,与基线相比降低了62%。结果还显示NC-FSH FET在${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$比率和SS方面优于NC-nanosheet (NSH) FET。总体而言,在FSH FET中引入NC效应可以增加相当大的功率和性能优势,同时克服与3nm及以上制造节点相关的缩放挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Negative Capacitance Effect in Sub-3-nm Forksheet FETs
Forksheet (FSH) field-effect transistors (FETs) have the potential to continue scaling beyond the 3-nm technology node. Here, we present a comprehensive analysis of the performance of hysteresis-free negative capacitance (NC)-FSH FET with a metal-ferroelectric–metal-insulator–semiconductor (MFMIS) structure. Adding a ferroelectric (FE) layer into the gate-stack of a conventional FSH FET can significantly boost device performance, enabling lower subthreshold swing (SS), higher on-current-to- off -current ( ${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$ ) ratio, lower threshold voltage ( ${V}_{\text {th}}$ ), higher transconductance ( ${g}_{\text {m}}$ ), and faster switching. Device characteristics are obtained by combining the solutions of the 1-D Landau-Khalatnikov (L-K) equation with fully calibrated 3-D technology computer-aided design (TCAD) simulations. The proposed NC-FSH FET exhibits, on average, a ~3.46% increase in ${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$ ratio, ~19.2% faster switching, and ~63% reduction in ${V}_{\text {th}}$ compared to the baseline FSH FET. Furthermore, the NC-FSH FET achieves an SS as low as 29.76 mV/decade, which is a ~62% reduction from its baseline counterpart. Results also show the superiority of NC-FSH FET over NC-nanosheet (NSH) FET in terms of ${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$ ratio and SS. Overall, introducing the NC effect in FSH FETs can add considerable power and performance benefits, while overcoming the scaling challenges associated with 3 nm and beyond manufacturing nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY A Low-Noise High-Photon Detection Efficiency Silicon Photomultiplier in 0.11-μm CMOS Proposal of a Simple Numerical Method for Determining the Height of the Schottky Barrier at Metal–Semiconductor Junctions Examination of Temperature-Dependent Polarization Switching Characteristics in Ferroelectric Ga-Doped HfO₂ Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1