小电阻接地配电网自调整全线电流保护新策略

Yabing Yan;Fei Ao;Huilin Liu;Biao Xu;Jinbo Wu;Hui Li;Yong Li;Sijia Hu
{"title":"小电阻接地配电网自调整全线电流保护新策略","authors":"Yabing Yan;Fei Ao;Huilin Liu;Biao Xu;Jinbo Wu;Hui Li;Yong Li;Sijia Hu","doi":"10.23919/CJEE.2024.000062","DOIUrl":null,"url":null,"abstract":"The existing current break protection cannot achieve full-line current protection and may lose its protection capability. Therefore, a self-adjusted full-line current protection strategy based on a double-layer criterion is proposed. The first layer of the criterion adopts the adaptive adjustment threshold as the setting value to realize full-line fault monitoring, which is not affected by the system operation mode and fault type. The second layer is used to locate the fault section of the line and improve the selectivity of the protection strategy. Considering the difficulty in accurately identifying high-resistance ground faults using current protection, an identification method based on compound power is proposed by analyzing the zero-sequence network of the system. Simulation results show that the proposed protection strategy can realize full-length line protection and the effective identification of high-resistance ground faults and is not affected by the system load variation and fault type.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"83-96"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10540367","citationCount":"0","resultStr":"{\"title\":\"Novel Self-adjusted Full-line Current Protection Strategy for Small Resistance Grounding Distribution Network\",\"authors\":\"Yabing Yan;Fei Ao;Huilin Liu;Biao Xu;Jinbo Wu;Hui Li;Yong Li;Sijia Hu\",\"doi\":\"10.23919/CJEE.2024.000062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing current break protection cannot achieve full-line current protection and may lose its protection capability. Therefore, a self-adjusted full-line current protection strategy based on a double-layer criterion is proposed. The first layer of the criterion adopts the adaptive adjustment threshold as the setting value to realize full-line fault monitoring, which is not affected by the system operation mode and fault type. The second layer is used to locate the fault section of the line and improve the selectivity of the protection strategy. Considering the difficulty in accurately identifying high-resistance ground faults using current protection, an identification method based on compound power is proposed by analyzing the zero-sequence network of the system. Simulation results show that the proposed protection strategy can realize full-length line protection and the effective identification of high-resistance ground faults and is not affected by the system load variation and fault type.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"10 4\",\"pages\":\"83-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10540367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10540367/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10540367/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

现有的断流保护不能实现全线电流保护,可能失去保护能力。为此,提出了一种基于双层判据的自调整全线电流保护策略。判据的第一层采用自适应调整阈值作为整定值,实现全线故障监测,不受系统运行方式和故障类型的影响。第二层用于对线路的故障区段进行定位,提高保护策略的选择性。针对电流保护难以准确识别高阻接地故障的问题,通过对系统零序网络的分析,提出了一种基于复合功率的接地故障识别方法。仿真结果表明,所提出的保护策略能够实现线路全长保护和高阻接地故障的有效识别,且不受系统负荷变化和故障类型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Self-adjusted Full-line Current Protection Strategy for Small Resistance Grounding Distribution Network
The existing current break protection cannot achieve full-line current protection and may lose its protection capability. Therefore, a self-adjusted full-line current protection strategy based on a double-layer criterion is proposed. The first layer of the criterion adopts the adaptive adjustment threshold as the setting value to realize full-line fault monitoring, which is not affected by the system operation mode and fault type. The second layer is used to locate the fault section of the line and improve the selectivity of the protection strategy. Considering the difficulty in accurately identifying high-resistance ground faults using current protection, an identification method based on compound power is proposed by analyzing the zero-sequence network of the system. Simulation results show that the proposed protection strategy can realize full-length line protection and the effective identification of high-resistance ground faults and is not affected by the system load variation and fault type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
期刊最新文献
Contents Front Cover Minimizing Power Losses in Distribution Networks: A Comprehensive Review Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1