缺血性卒中的网络异常:静息状态功能连通性的荟萃分析。

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2025-01-04 DOI:10.1007/s10548-024-01096-6
Zheng Zhang
{"title":"缺血性卒中的网络异常:静息状态功能连通性的荟萃分析。","authors":"Zheng Zhang","doi":"10.1007/s10548-024-01096-6","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases. A total of 24 studies were identified as eligible for inclusion in the present meta-analysis. These studies included 269 foci observed in 58 contrasts (558 patients with ischemic stroke; 526 healthy controls; 38.84% female). The results showed: (1) within-network hypoconnectivity in the sensorimotor network (SMN), default mode network (DMN), frontoparietal network (FPN), and salience network (SN), respectively; (2) across-network hypoconnectivity between the SMN and both of the SN and visual network, and between the FPN and both of the SN and DMN; and (3) across-network hyperconnectivity between the SMN and both of the DMN and FPN, and between the SN and both of the DMN and FPN. Meta-regression showed that hypoconnectivity between the DMN and the FPN became less pronounced as the ischemic stroke phase progressed from the acute to the subacute and chronic phases. This study provides the first meta-analytic evidence of large-scale rsFC dysfunction in ischemic stroke. These dysfunctional biomarkers could help identify patients with ischemic stroke at risk for cognitive, sensory, motor, and emotional impairments and further provide potential insight into developing diagnostic models and therapeutic interventions for rehabilitation and recovery.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"19"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.\",\"authors\":\"Zheng Zhang\",\"doi\":\"10.1007/s10548-024-01096-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases. A total of 24 studies were identified as eligible for inclusion in the present meta-analysis. These studies included 269 foci observed in 58 contrasts (558 patients with ischemic stroke; 526 healthy controls; 38.84% female). The results showed: (1) within-network hypoconnectivity in the sensorimotor network (SMN), default mode network (DMN), frontoparietal network (FPN), and salience network (SN), respectively; (2) across-network hypoconnectivity between the SMN and both of the SN and visual network, and between the FPN and both of the SN and DMN; and (3) across-network hyperconnectivity between the SMN and both of the DMN and FPN, and between the SN and both of the DMN and FPN. Meta-regression showed that hypoconnectivity between the DMN and the FPN became less pronounced as the ischemic stroke phase progressed from the acute to the subacute and chronic phases. This study provides the first meta-analytic evidence of large-scale rsFC dysfunction in ischemic stroke. These dysfunctional biomarkers could help identify patients with ischemic stroke at risk for cognitive, sensory, motor, and emotional impairments and further provide potential insight into developing diagnostic models and therapeutic interventions for rehabilitation and recovery.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 2\",\"pages\":\"19\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01096-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01096-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异常的大范围静息状态功能连接(rsFC)在缺血性卒中中经常被记录。然而,目前尚不清楚内部和跨网络连接模式的改变。本荟萃分析的目的是确定缺血性卒中患者相对于健康对照者的rsFC改变,并揭示急性、亚急性和慢性期网络功能障碍的纵向变化。共有24项研究被确定为符合纳入本荟萃分析的条件。这些研究包括在58组对照中观察到的269个病灶(558例缺血性卒中患者;526名健康对照;38.84%的女性)。结果表明:(1)感觉运动网络(SMN)、默认模式网络(DMN)、额顶叶网络(FPN)和显著性网络(SN)分别存在网络内低连通性;(2) SMN与SN和视觉网络、FPN与SN和DMN之间的跨网络非连通性;(3) SMN与DMN和FPN之间、SN与DMN和FPN之间的跨网络超连通性。meta回归显示,随着缺血性脑卒中从急性期进展到亚急性期和慢性期,DMN和FPN之间的低连通性变得不那么明显。该研究首次提供了缺血性卒中中rsFC功能障碍的meta分析证据。这些功能失调的生物标志物可以帮助识别有认知、感觉、运动和情绪障碍风险的缺血性中风患者,并进一步为开发诊断模型和康复治疗干预提供潜在的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases. A total of 24 studies were identified as eligible for inclusion in the present meta-analysis. These studies included 269 foci observed in 58 contrasts (558 patients with ischemic stroke; 526 healthy controls; 38.84% female). The results showed: (1) within-network hypoconnectivity in the sensorimotor network (SMN), default mode network (DMN), frontoparietal network (FPN), and salience network (SN), respectively; (2) across-network hypoconnectivity between the SMN and both of the SN and visual network, and between the FPN and both of the SN and DMN; and (3) across-network hyperconnectivity between the SMN and both of the DMN and FPN, and between the SN and both of the DMN and FPN. Meta-regression showed that hypoconnectivity between the DMN and the FPN became less pronounced as the ischemic stroke phase progressed from the acute to the subacute and chronic phases. This study provides the first meta-analytic evidence of large-scale rsFC dysfunction in ischemic stroke. These dysfunctional biomarkers could help identify patients with ischemic stroke at risk for cognitive, sensory, motor, and emotional impairments and further provide potential insight into developing diagnostic models and therapeutic interventions for rehabilitation and recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach. Individuals' Food Preferences can be Influenced by the Music Styles: An ERP Study. Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study. Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke. Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1