Mohammad Rasouli, Fatemeh Safari, Raheleh Roudi, Navid Sobhani
{"title":"间充质干细胞分泌组对乳腺癌基因表达的影响:一种识别差异表达基因、功能网络和潜在治疗靶点的生物信息学方法。","authors":"Mohammad Rasouli, Fatemeh Safari, Raheleh Roudi, Navid Sobhani","doi":"10.1016/j.compbiolchem.2024.108331","DOIUrl":null,"url":null,"abstract":"<p><p>The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca<sup>2 +</sup> medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108331"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets.\",\"authors\":\"Mohammad Rasouli, Fatemeh Safari, Raheleh Roudi, Navid Sobhani\",\"doi\":\"10.1016/j.compbiolchem.2024.108331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca<sup>2 +</sup> medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"115 \",\"pages\":\"108331\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2024.108331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets.
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca2 + medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.