通过改善分层雪和雨雪(ROS)事件中液态水运动的表现来改善积雪化学模拟:在挪威斯瓦尔巴群岛的应用

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-12-31 DOI:10.1016/j.jhydrol.2024.132573
Diogo Costa , Andrea Spolaor , Elena Barbaro , Juan I. López-Moreno , John W. Pomeroy
{"title":"通过改善分层雪和雨雪(ROS)事件中液态水运动的表现来改善积雪化学模拟:在挪威斯瓦尔巴群岛的应用","authors":"Diogo Costa ,&nbsp;Andrea Spolaor ,&nbsp;Elena Barbaro ,&nbsp;Juan I. López-Moreno ,&nbsp;John W. Pomeroy","doi":"10.1016/j.jhydrol.2024.132573","DOIUrl":null,"url":null,"abstract":"<div><div>Circumpolar and high-elevation cold regions receive a large portion of their annual precipitation as snowfall, which accumulates in snowpacks that can store many contaminants. The discharge of chemical eluent during snowmelt can alter the chemical composition of local streams and have a detrimental effect on aquatic ecosystems.</div><div>Cold regions have been particularly affected by climate change. In the last two decades, the Arctic has been exposed to dramatic atmospheric temperature increases, sea ice decrease, and an increase of air mass transport from lower latitudes bringing warmer and more humid air masses. Instrumental measurements in the Svalbard archipelago, Norway, show that climate warming here is amplified compared to the global average, making its cryospheric environment extremely vulnerable to future climate scenarios.</div><div>In this study, the PULSE model for simulation of snowpack solute dynamics was coupled to two snowpack energy balance models, the Cold Regions Hydrological Model and the SNOWPACK model, to help identify critical processes needed to improve the accuracy of snow chemistry predictions. Focus was given to <figure><img></figure> to represent sea spray sources, <figure><img></figure> to represent terrestrial dust, and <figure><img></figure> to represent various sources including sea salt, biogenic emissions, and long-range atmospheric transport of secondary aerosols. The new coupled models were applied to an experimental site in Svalbard. The hydrological components of each model coupling were validated against snowdepth measurements and the snowpack chemistry components were verified for a selected number of snow ions representative of different sources. Both models were able to predict snowdepths between 1996 and 2018, as well as the stratification of snow chemistry measured during a whole snow accumulation and ablation year. Results show that explicitly representing liquid water movement through layered snow helped improve chemistry predictions. Events such as rain-on-snow (ROS) had a disproportionate effect on the redistribution of ions to deeper snow layers.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"651 ","pages":"Article 132573"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving snowpack chemistry simulations through improved representation of liquid water movement through layered snow and rain-on-snow (ROS) episodes: Application to Svalbard, Norway\",\"authors\":\"Diogo Costa ,&nbsp;Andrea Spolaor ,&nbsp;Elena Barbaro ,&nbsp;Juan I. López-Moreno ,&nbsp;John W. Pomeroy\",\"doi\":\"10.1016/j.jhydrol.2024.132573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Circumpolar and high-elevation cold regions receive a large portion of their annual precipitation as snowfall, which accumulates in snowpacks that can store many contaminants. The discharge of chemical eluent during snowmelt can alter the chemical composition of local streams and have a detrimental effect on aquatic ecosystems.</div><div>Cold regions have been particularly affected by climate change. In the last two decades, the Arctic has been exposed to dramatic atmospheric temperature increases, sea ice decrease, and an increase of air mass transport from lower latitudes bringing warmer and more humid air masses. Instrumental measurements in the Svalbard archipelago, Norway, show that climate warming here is amplified compared to the global average, making its cryospheric environment extremely vulnerable to future climate scenarios.</div><div>In this study, the PULSE model for simulation of snowpack solute dynamics was coupled to two snowpack energy balance models, the Cold Regions Hydrological Model and the SNOWPACK model, to help identify critical processes needed to improve the accuracy of snow chemistry predictions. Focus was given to <figure><img></figure> to represent sea spray sources, <figure><img></figure> to represent terrestrial dust, and <figure><img></figure> to represent various sources including sea salt, biogenic emissions, and long-range atmospheric transport of secondary aerosols. The new coupled models were applied to an experimental site in Svalbard. The hydrological components of each model coupling were validated against snowdepth measurements and the snowpack chemistry components were verified for a selected number of snow ions representative of different sources. Both models were able to predict snowdepths between 1996 and 2018, as well as the stratification of snow chemistry measured during a whole snow accumulation and ablation year. Results show that explicitly representing liquid water movement through layered snow helped improve chemistry predictions. Events such as rain-on-snow (ROS) had a disproportionate effect on the redistribution of ions to deeper snow layers.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"651 \",\"pages\":\"Article 132573\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424019693\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424019693","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

环极和高海拔寒冷地区的年降水量有很大一部分以降雪的形式出现,降雪积聚在积雪中,可以储存许多污染物。融雪过程中化学淋洗液的排放会改变当地河流的化学成分,对水生生态系统产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving snowpack chemistry simulations through improved representation of liquid water movement through layered snow and rain-on-snow (ROS) episodes: Application to Svalbard, Norway
Circumpolar and high-elevation cold regions receive a large portion of their annual precipitation as snowfall, which accumulates in snowpacks that can store many contaminants. The discharge of chemical eluent during snowmelt can alter the chemical composition of local streams and have a detrimental effect on aquatic ecosystems.
Cold regions have been particularly affected by climate change. In the last two decades, the Arctic has been exposed to dramatic atmospheric temperature increases, sea ice decrease, and an increase of air mass transport from lower latitudes bringing warmer and more humid air masses. Instrumental measurements in the Svalbard archipelago, Norway, show that climate warming here is amplified compared to the global average, making its cryospheric environment extremely vulnerable to future climate scenarios.
In this study, the PULSE model for simulation of snowpack solute dynamics was coupled to two snowpack energy balance models, the Cold Regions Hydrological Model and the SNOWPACK model, to help identify critical processes needed to improve the accuracy of snow chemistry predictions. Focus was given to
to represent sea spray sources,
to represent terrestrial dust, and
to represent various sources including sea salt, biogenic emissions, and long-range atmospheric transport of secondary aerosols. The new coupled models were applied to an experimental site in Svalbard. The hydrological components of each model coupling were validated against snowdepth measurements and the snowpack chemistry components were verified for a selected number of snow ions representative of different sources. Both models were able to predict snowdepths between 1996 and 2018, as well as the stratification of snow chemistry measured during a whole snow accumulation and ablation year. Results show that explicitly representing liquid water movement through layered snow helped improve chemistry predictions. Events such as rain-on-snow (ROS) had a disproportionate effect on the redistribution of ions to deeper snow layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Assessing compound flood hazards in the Pearl river Delta: A Scenario-Based Integration of trivariate fluvial conditions and extreme storm events Quantitative assessment and analysis of the impact of inter-basin water transfer on regional water resource stress Efficient glacial lake mapping by leveraging deep transfer learning and a new annotated glacial lake dataset Effects of surface vegetation and litter on rainfall redistribution during the rainy season in semiarid grasslands Widespread consistent but rapid response of terrestrial ecosystem photosynthesis and respiratory to drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1